Computational methods for pandemic-scale genomic epidemiology
大流行规模基因组流行病学的计算方法
基本信息
- 批准号:MR/Z503526/1
- 负责人:
- 金额:$ 61.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Phylogenetic analyses of genome sequences from infectious pathogens can reveal essential information regarding their evolution and transmission history. As the COVID-19 pandemic exemplified, these analyses and data play a crucial role in epidemiology and are essential to track and reconstruct the spread of infectious disease within communities and between countries; to understand the dynamics of transmission; to estimate the efficacy of containment measures; to predict epidemiological dynamics; and to monitor pathogen evolution as showcased by the identification of new SARS-CoV-2 mutations and variants of concern.With ongoing improvement and widespread adoption of genome sequencing technologies, genomic epidemiology will become a key medical asset. Improvements to genomic epidemiological data analysis methods therefore will not only help us tackle ongoing infectious disease epidemics, but will also enhance our preparedness towards future pandemics.However, current investigations of genomic epidemiological data are predominantly based on computational methods that are not tailored to their needs, but rather were developed for evolutionary biology studies where typically few, highly diverged genomes are considered. Most desirable analyses of large genome sequence data sets, such as those that emerged during the COVID-19 pandemic, are thus currently unfeasible.In this project we address this limitation by developing computational methods tailored for pandemic-scale genomic epidemiology. These methods will enable accurate real-time analyses of large genomic epidemiological data sets. These objectives fall within several priorities of the MRC, such as "Global health", "Infections and immunity", "Antimicrobial resistance", and "Biomedical and health data science". Our specific aims are to:1) Develop algorithms for genomic epidemiology. We will develop new algorithms for analysing genome sequence data. We will exploit the fact that sequences in genomic epidemiology are typically very closely related, and thus very similar to each other, to devise algorithms and mathematical approaches tailored for this field. Based on our past experience, we expect these approaches to be thousands of times more efficient than traditional methods: allowing the analysis of millions rather than thousands of genome sequences.2) Increase realism and accuracy. Highly variable mutation rates and recurrent sequence errors, while common, cause errors and uncertainty in current genomic epidemiological analyses. To increase the accuracy of our methods without affecting their efficiency, we will develop bespoke mathematical models of genome evolution that take into account these complexities of genomic epidemiological data.3) Pave the way to wider implementation. We will develop an efficient open-source software library to easily integrate our new methods within other highly impactful software packages for the analysis of genetic data. This will allow the broadest application of our methods, as users will be able to adopt them for a variety of analyses, such the estimation of transmission histories or the timely identification of variants of concern.4) Enable pandemic-scale Bayesian phylogenetics. Bayesian phylogenetics is at the core of most advanced applications in genomic epidemiology, such as phylogeography (the study of the spread of pathogens within and between borders) and phylodynamics (the study of pathogen prevalence changes through time). We will integrate our methods within the widely used Bayesian phylogenetic package BEAST to allow the analysis of data sets of millions of genomes.
对传染性病原体基因组序列进行系统发育分析可以揭示有关其进化和传播历史的重要信息。正如 COVID-19 大流行所证明的那样,这些分析和数据在流行病学中发挥着至关重要的作用,对于跟踪和重建传染病在社区内和国家之间的传播至关重要;了解传输动态;评估遏制措施的有效性;预测流行病学动态;通过识别新的 SARS-CoV-2 突变和相关变体来监测病原体进化。随着基因组测序技术的不断改进和广泛采用,基因组流行病学将成为一项重要的医疗资产。因此,基因组流行病学数据分析方法的改进不仅将帮助我们应对正在发生的传染病流行,还将增强我们对未来大流行病的准备。然而,目前对基因组流行病学数据的研究主要基于计算方法,而这些方法并不适合其需求。 ,而是为进化生物学研究而开发,通常考虑很少的、高度分化的基因组。因此,对大型基因组序列数据集(例如在 COVID-19 大流行期间出现的数据集)进行最理想的分析目前是不可行的。在这个项目中,我们通过开发针对大流行规模的基因组流行病学量身定制的计算方法来解决这一限制。这些方法将使大型基因组流行病学数据集能够进行准确的实时分析。这些目标属于 MRC 的几个优先事项,例如“全球健康”、“感染和免疫”、“抗菌素耐药性”以及“生物医学和健康数据科学”。我们的具体目标是:1) 开发基因组流行病学算法。我们将开发新的算法来分析基因组序列数据。我们将利用基因组流行病学中的序列通常非常密切相关,因此彼此非常相似的事实,来设计适合该领域的算法和数学方法。根据我们过去的经验,我们预计这些方法的效率比传统方法高数千倍:允许分析数百万而不是数千个基因组序列。2) 提高真实性和准确性。高度可变的突变率和反复出现的序列错误虽然常见,但会导致当前基因组流行病学分析中的错误和不确定性。为了提高我们方法的准确性而不影响其效率,我们将开发定制的基因组进化数学模型,其中考虑到基因组流行病学数据的这些复杂性。3) 为更广泛的实施铺平道路。我们将开发一个高效的开源软件库,以便轻松地将我们的新方法集成到其他具有高度影响力的软件包中,以进行遗传数据分析。这将使我们的方法得到最广泛的应用,因为用户将能够采用它们进行各种分析,例如估计传播历史或及时识别所关注的变异。4) 实现大流行规模的贝叶斯系统发育学。贝叶斯系统发生学是基因组流行病学中最先进应用的核心,例如系统发育地理学(研究病原体在边界内和边界之间的传播)和系统动力学(研究病原体流行率随时间的变化)。我们将把我们的方法集成到广泛使用的贝叶斯系统发育软件包 BEAST 中,以分析数百万个基因组的数据集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nick Goldman其他文献
Statistics of the log-det estimator.
log-det 估计器的统计数据。
- DOI:
10.1093/molbev/msm160 - 发表时间:
2007 - 期刊:
- 影响因子:10.7
- 作者:
Tim Massingham;Nick Goldman - 通讯作者:
Nick Goldman
Genetic Variability of the SARS-CoV-2 Pocketome
SARS-CoV-2 Pocketome 的遗传变异
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:4.4
- 作者:
Setayesh Yazdani;N. de Maio;Yining Ding;Vijay Shahani;Nick Goldman;M. Schapira - 通讯作者:
M. Schapira
Phylogenetic analysis of the rpoB gene from the plastid-like DNA of Plasmodium falciparum.
恶性疟原虫类质体 DNA 中 rpoB 基因的系统发育分析。
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Malcolm J. Gardner;Nick Goldman;Phillip Barnett;P. W. Moore;Kaveri Rangachari;Malcolm Strath;Andrea Whyte;Don Williamson;R. Wilson - 通讯作者:
R. Wilson
predictions for 1% of the human genome Analyses of deep mammalian sequence alignments and constraint data
预测%20for%201%%20of%20the%20人类%20基因组%20分析%20of%20deep%20哺乳动物%20序列%20比对%20和%20约束%20数据
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Genome Res Miller;L. Pachter;Eric D. Green;Arend Sidow Marra;S. Antonarakis;S. Batzoglou;Nick Goldman;Ross C. Hardison;David Haussler;Webb A Donna Karolchik;Matt Field;Richard A. Moore;Carrie A. Matthewson;J. Schein;Marco Harte;A. Hinrichs;Heather Trumbower;H. Clawson;A. Zweig;R. Kuhn;G. Barber;Rachel Clamp;James A. Cuff;S. Gnerre;David B. Jaffe;Jean L. Chang;Kerstin Lindblad;Eric S. Lander;M. Weinstock;Richard A. Gibbs;T. Graves;Robert S. Fulton;Elaine R. Mardis;Michele Richard K. Wilson;George W. Blakesley;D. Muzny;E. Sodergren;David A. Wheeler;K. Worley;Huaiyang Jiang Maduro;Baishali Maskeri;Jennifer C Mcdowell;Morgan Park;Pamela J. Thomas;Alice C. Young;Robert W. James Kent;G. Bouffard;Xiaobin Guan;Nancy F. Hansen;J. Idol;Valerie V.B Rosenbloom Bickel;Ian Holmes;J. Mullikin;A. Ureta;B. Paten;Eric A. Stone;Kate R Montoya;A. Löytynoja;Simon Whelan;F. Pardi;Tim Massingham;Peter James B. Brown;E. Birney;Damian Keefe;Ariel S. Schwartz;Minmei Hou;James Taylor;Sergey Nikolaev;Juan I Elliott;H. Margulies;Gregory M. Cooper;G. Asimenos;Daryl J. Thomas;Colin N. Dewey;Adam C. Siepel;Genome Research;E. Margulies;J. Montoya;Peter J. Bickel;K. Rosenbloom;W. Kent;Webb Miller;A. Sidow - 通讯作者:
A. Sidow
predictions for 1 % of the human genome Analyses of deep mammalian sequence alignments and constraint Material Supplemental
预测%20for%201%20%%20of%20the%20人类%20基因组%20分析%20of%20deep%20哺乳动物%20序列%20比对%20和%20约束%20材料%20补充
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
E. Margulies;Gregory M. Cooper;G. Asimenos;Daryl J. Thomas;Colin N. Dewey;Adam C. Siepel;E. Birney;Damian Keefe;Ariel S. Schwartz;Minmei Hou;James Taylor;Sergey Nikolaev;J. Montoya;A. Löytynoja;Simon Whelan;F. Pardi;Tim Massingham;James B. Brown;Peter J. Bickel;Ian Holmes;J. Mullikin;A. Ureta;B. Paten;Eric A. Stone;K. Rosenbloom;W. Kent;S. Antonarakis;S. Batzoglou;Nick Goldman;Ross C. Hardison;David Haussler;Webb Miller;L. Pachter;Eric D. Green;A. Sidow - 通讯作者:
A. Sidow
Nick Goldman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nick Goldman', 18)}}的其他基金
SynDNAStore. Synthetic biology innovation around the design of DNA molecules for digital archiving
SynDNAStore。
- 批准号:
BB/L023741/1 - 财政年份:2015
- 资助金额:
$ 61.37万 - 项目类别:
Research Grant
BBSRC Doctoral Training Grant - 2005
BBSRC 博士培训补助金 - 2005
- 批准号:
BB/D52627X/1 - 财政年份:2006
- 资助金额:
$ 61.37万 - 项目类别:
Training Grant
相似国自然基金
协同极化信息的时序InSAR地质灾害监测优化方法研究
- 批准号:42307255
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
冻融环境下GFRP锚杆锚固界面粘结劣化机理及其设计方法研究
- 批准号:52308165
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于瞬态成像响应的非同步相移轮廓术三维测量方法研究
- 批准号:62375078
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
构件复杂背景下的实景三维古建筑物细节多层次语义提取方法研究
- 批准号:62306107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多源微振动抑制的智能柔顺多稳态耗能机理与方法研究
- 批准号:52305103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
- 批准号:
10794448 - 财政年份:2023
- 资助金额:
$ 61.37万 - 项目类别:
Mathematical Modeling and Scientific Computing for Infectious Disease Research
传染病研究的数学建模和科学计算
- 批准号:
10793008 - 财政年份:2023
- 资助金额:
$ 61.37万 - 项目类别:
The evolutionary landscape of HIV broadly neutralizing antibody development
HIV广泛中和抗体发展的进化格局
- 批准号:
10726119 - 财政年份:2023
- 资助金额:
$ 61.37万 - 项目类别:
Tracking SARS-CoV-2 one molecule at a time: Spatiotemporal investigation of coronavirus replication dynamics and host response in single cells in vitro and in vivo
一次跟踪一个分子 SARS-CoV-2:体外和体内单细胞中冠状病毒复制动态和宿主反应的时空研究
- 批准号:
10446423 - 财政年份:2022
- 资助金额:
$ 61.37万 - 项目类别: