Next generation forest dynamics modelling using remote sensing data

使用遥感数据的下一代森林动力学建模

基本信息

  • 批准号:
    MR/Y033981/1
  • 负责人:
  • 金额:
    $ 75.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Globally, human-induced climate change and biodiversity loss threaten ecosystem function and the services the biosphere provides for humans. Forests are carbon-dense ecosystems and are home to the majority of terrestrial biodiversity, so are crucial tools to mitigate adverse impacts. Indeed, many countries, including many in Europe, have ambitious policies to restore and replant forests to restore carbon and habitats. However, forests are themselves threatened by climate change and biodiversity loss, so understanding and predicting their future in the face of global change is a priority. In order to understand how forests are changing, and how they will change in the future, we need large monitoring networks collecting data, to embrace new measurement techniques, to fuse data from multiple sources, and to create robust, data-driven, predictive models. Traditional forest data is severely limited in both its spatiotemporal coverage and what it can measure, and whilst existing ecological models are tailored to such data, these focus on the small scale and cannot predict the future of forests at large enough scales to help understand the impacts of climate change. New approaches are needed.This fellowship will use cutting-edge remote sensing data and modern data science techniques to generate new understanding of current and future forest functioning. Active and passive remote sensors, including terrestrial and drone laser scanning and structure from motion photogrammetry, are able to capture the full three-dimensional structure of a forest to sub-cm scale within three-dimensional point clouds. This fellowship will collect and collate such data from tens of thousands of trees across hundreds of forest plots in Europe, creating a massive new dataset of tree and forest structure. Such data are extremely complex to analyse, and the project will use specially developed and tailored deep learning techniques to extract ecological information from noisy point clouds. Some plots that have already been measured will be re-measured, to capture three dimensional tree growth and forest structural change.The fellowship will analyse these data to determine how trees and forests are structured across Europe, and how their three-dimensional structure affects and is affected by their productivity, carbon storage, and the diversity of both the trees and other species living in forests. New insights into how biodiversity is related to three-dimensional structure will bring help develop approaches to co-monitoring biodiversity and biomass, crucial for demonstrating the value of ecosystems towards tackling both climate change and biodiversity loss. Using newly developed software, the fellowship will scale local, single-measurement plot-scale information to continental scale and continuous monitoring by fusing ground and Earth Observation (satellite) data. Using deep learning to link the structural and diversity information from hundreds of thousands of plot locations across Europe with the spectral properties measured by satellite sensors, the fellowship will bring new understanding on how forests are structured and how they are changing across Europe. Finally, using findings from all parts of the fellowship, a new modelling framework which can predict ecological change on the ground at local scale but which can ingest satellite data will be developed. This data-driven approach will enable robust and updatable predictions of climate change impacts on forest diversity and dynamics across Europe. It will be constructed to be flexible to incorporate future data streams, so informing inform climate change mitigation policy across the continent.
在全球范围内,人类引起的气候变化和生物多样性丧失威胁着生态系统功能和生物圈为人类提供的服务。森林是碳密集的生态系统,是大多数陆地生物多样性的家园,因此是减轻不利影响的重要工具。事实上,许多国家,包括许多欧洲国家,都制定了雄心勃勃的政策来恢复和重新种植森林,以恢复碳和栖息地。然而,森林本身也受到气候变化和生物多样性丧失的威胁,因此在全球变化面前了解和预测森林的未来是当务之急。为了了解森林正在如何变化以及未来将如何变化,我们需要大型监测网络收集数据,采用新的测量技术,融合多个来源的数据,并创建强大的、数据驱动的预测模型。传统的森林数据在时空覆盖范围和可测量范围方面都受到严重限制,虽然现有的生态模型是针对此类数据量身定制的,但这些模型侧重于小规模,无法在足够大的范围内预测森林的未来,以帮助了解影响气候变化。需要新的方法。该奖学金将利用尖端的遥感数据和现代数据科学技术来对当前和未来的森林功能产生新的理解。主动和被动遥感器,包括地面和无人机激光扫描以及运动摄影测量结构,能够在三维点云内捕获亚厘米级森林的完整三维结构。该奖学金将从欧洲数百个森林地块的数万棵树中收集和整理这些数据,创建一个庞大的树木和森林结构的新数据集。此类数据分析起来极其复杂,该项目将使用专门开发和定制的深度学习技术从嘈杂的点云中提取生态信息。一些已经测量过的地块将被重新测量,以捕捉三维树木生长和森林结构变化。该奖学金将分析这些数据,以确定整个欧洲的树木和森林的结构,以及它们的三维结构如何影响和受到生产力、碳储存以及树木和森林中其他物种多样性的影响。关于生物多样性与三维结构如何相关的新见解将有助于开发共同监测生物多样性和生物量的方法,这对于展示生态系统在应对气候变化和生物多样性丧失方面的价值至关重要。该项目将使用新开发的软件,将本地的单一测量地块尺度信息扩展到大陆尺度,并通过融合地面和地球观测(卫星)数据进行连续监测。该奖学金利用深度学习将欧洲数十万个地点的结构和多样性信息与卫星传感器测量的光谱特性联系起来,将为欧洲各地的森林结构及其变化带来新的认识。最后,利用该研究金的各个部分的研究结果,将开发一个新的建模框架,该框架可以预测局部范围内的地面生态变化,但可以吸收卫星数据。这种数据驱动的方法将能够对气候变化对整个欧洲森林多样性和动态的影响进行稳健且可更新的预测。它将被构建为灵活地纳入未来的数据流,从而为整个非洲大陆的气候变化缓解政策提供信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily Lines其他文献

Emily Lines的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily Lines', 18)}}的其他基金

Next generation forest dynamics modelling using remote sensing data
使用遥感数据的下一代森林动力学建模
  • 批准号:
    MR/T019832/1
  • 财政年份:
    2020
  • 资助金额:
    $ 75.74万
  • 项目类别:
    Fellowship

相似国自然基金

面向IPv6下一代互联网的网络空间基础资源测量关键技术研究
  • 批准号:
    62302253
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新一代地下工程原位岩体强度建构方法基础研究
  • 批准号:
    52334004
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
基于从头设计蛋白质的新一代CAR-T免疫疗法的研发
  • 批准号:
    32370989
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
创制可转化利用木质素基酚类化合物的新一代产油红酵母
  • 批准号:
    22308350
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于中日两国新一代地球静止轨道卫星的植被初级生产力遥感
  • 批准号:
    42311540014
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

RNA biomarkers for alcohol use disorder
酒精使用障碍的 RNA 生物标志物
  • 批准号:
    10808532
  • 财政年份:
    2023
  • 资助金额:
    $ 75.74万
  • 项目类别:
Wake Forest NeuroNext Clinical Site (WAKENN)
维克森林 NeuroNext 临床站点 (WAKENN)
  • 批准号:
    10744928
  • 财政年份:
    2023
  • 资助金额:
    $ 75.74万
  • 项目类别:
Advancing One Health Data Capture at the Point of Zoonotic Spillover in the Congo Basin Forest Perimeter
在刚果盆地森林周边人畜共患病蔓延时推进单一健康数据采集
  • 批准号:
    10741526
  • 财政年份:
    2023
  • 资助金额:
    $ 75.74万
  • 项目类别:
KRAS G12C: Kinetic and Redox Characterization of Covalent Inhibition
KRAS G12C:共价抑制的动力学和氧化还原表征
  • 批准号:
    10682167
  • 财政年份:
    2023
  • 资助金额:
    $ 75.74万
  • 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
  • 批准号:
    10727374
  • 财政年份:
    2023
  • 资助金额:
    $ 75.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了