Rotationally controlled gas-surface reactions
旋转控制的气体表面反应
基本信息
- 批准号:MR/X03609X/1
- 负责人:
- 金额:$ 127.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Hydrogen (H2) is the most abundant molecule in the universe, and its interaction with surfaces plays a pivotal role in many applications, from the formation of stars and the safe storage of rocket fuel, to hydrogen fuel cells and industrial catalysis. Despite also being the simplest molecule in existence, we do not yet have an accurate predictive understanding of the interaction of H2 with even the simplest solid surfaces. As such, to improve our knowledge and understanding, carefully controlled experiments are required which probe the collisions of H2 with surfaces at a fundamental, molecular level. There are several factors that can determine the outcome of these collisions, including how fast the molecule is travelling and how it is rotating with respect to the surface, as well as the material the surface is made from and the surface temperature. Experiments which can independently vary each of these (and other) factors will provide the most detailed insight into this gas-surface collision, as they probe the role each factor plays, remove the need for averaging and the uncertainty this leads to, and provide the most stringent tests of theoretical models that must accurately reproduce these carefully controlled experiments.In this project the rotational orientation of hydrogen molecules, which can be considered to correspond to whether the molecule is rotating like a helicopter or a cartwheel, will be controlled and manipulated to determine whether this parameter can be used to control the reactivity of H2 in collisions with a surface. These measurements will be performed using a unique and novel magnetic manipulation experimental apparatus and technique, that is based within the Department of Chemistry at Swansea University, to control the rotational orientation of H2 molecules in scattering experiments. The results of these experiments will provide the first quantitative insight into the effect the rotational orientation of H2 has on the probability the molecule dissociates when it collides with a surface. The project will also explore how the rotational orientation of H2 changes the transfer of energy between the molecule and the surface. This energy transfer process is an important step for trapping a molecule on a surface and correspondingly changes reaction probabilities, yet its relation to the rotational orientation of the molecule was so far inaccessible to previous experiments. Finally, having established the methodology for collisions on H2, the apparatus and technique will be further developed for small polyatomic molecules such as methane. The results from all of the project will be invaluable in the quest to develop accurate theoretical models of gas-surface reactions.
氢 (H2) 是宇宙中最丰富的分子,它与表面的相互作用在许多应用中发挥着关键作用,从恒星的形成和火箭燃料的安全储存,到氢燃料电池和工业催化。尽管它也是现存最简单的分子,但我们还无法准确预测 H2 与最简单固体表面的相互作用。因此,为了提高我们的知识和理解,需要仔细控制实验,在基本的分子水平上探测氢气与表面的碰撞。有几个因素可以决定这些碰撞的结果,包括分子行进的速度、分子相对于表面的旋转方式,以及表面的材料和表面温度。可以独立改变这些(和其他)因素中的每一个的实验将提供对这种气体表面碰撞的最详细的了解,因为它们探讨了每个因素所扮演的角色,消除了平均的需要和由此导致的不确定性,并提供了对理论模型进行最严格的测试,必须准确地重现这些精心控制的实验。在这个项目中,氢分子的旋转方向(可以被认为对应于分子是否像直升机或侧手翻一样旋转)将受到控制和操纵,以确定该参数是否可用于控制反应性H2 与表面碰撞。这些测量将使用斯旺西大学化学系的独特新颖的磁操纵实验装置和技术进行,以控制散射实验中 H2 分子的旋转方向。这些实验的结果将首次定量地揭示氢气的旋转方向对分子与表面碰撞时解离概率的影响。该项目还将探索氢气的旋转方向如何改变分子和表面之间的能量转移。这种能量转移过程是将分子捕获在表面上的重要步骤,并相应地改变反应概率,但其与分子旋转方向的关系迄今为止是以前的实验无法获得的。最后,在建立了氢气碰撞方法后,将进一步开发适用于甲烷等小多原子分子的设备和技术。所有项目的结果对于开发准确的气体表面反应理论模型都是非常宝贵的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helen Chadwick其他文献
Helen Chadwick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
非受控高动态巨型星座网络高可靠理论及其关键技术研究
- 批准号:62372259
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
β型γ-TiAl合金(α+β)两相区高温变形机制及受控冷却组织遗传行为
- 批准号:52304412
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
真实非受控日常场景下的远程心脏健康监测
- 批准号:62311530046
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
潜流带“地质电池”储存与释放电子的规律与受控机制
- 批准号:42377056
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
大型丝状绿藻藻华驱动富营养化海参养殖池塘沉积物-水系统产甲烷过程及受控机制
- 批准号:42376155
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Development of a multi-gas sensor using strain-controlled graphene and its application to health monitoring
应变控制石墨烯多气体传感器的研制及其在健康监测中的应用
- 批准号:
23KJ0196 - 财政年份:2023
- 资助金额:
$ 127.7万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Sustainable Household Energy Adoption in Rwanda (SHEAR): Promoting Rural Health with Solar and Natural Gas
卢旺达可持续家庭能源采用(SHEAR):利用太阳能和天然气促进农村健康
- 批准号:
10712553 - 财政年份:2023
- 资助金额:
$ 127.7万 - 项目类别:
Multi-center, randomized, controlled trial of the feasibility and safety of inhaled hydrogen gas during ECPR
ECPR期间吸入氢气可行性和安全性的多中心、随机、对照试验
- 批准号:
10501177 - 财政年份:2022
- 资助金额:
$ 127.7万 - 项目类别:
Multi-center, randomized, controlled trial of the feasibility and safety of inhaled hydrogen gas during ECPR
ECPR期间吸入氢气可行性和安全性的多中心、随机、对照试验
- 批准号:
10700219 - 财政年份:2022
- 资助金额:
$ 127.7万 - 项目类别:
Apneic Oxygenation to Prevent Oxygen Desaturation During Intubation in the NICU
窒息供氧以防止 NICU 插管期间氧饱和度下降
- 批准号:
10570957 - 财政年份:2022
- 资助金额:
$ 127.7万 - 项目类别: