(Un)Fair inequality in the labor market: A global study
(Un)劳动力市场的公平不平等:一项全球研究
基本信息
- 批准号:MR/X033333/1
- 负责人:
- 金额:$ 185.98万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
"Every human society must justify its inequalities: unless reasons for them are found, the whole political and social edifice stands in danger of collapse" - Thomas PikettyHow do citizens of different societies perceive the fairness of inequalities? Answering this question is key to understanding increasing social tensions, and informing the design of policies that address the current and widespread discontent with existing economic and political institutions.There are two reasons why citizens may perceive inequalities as unfair. First, actual inequalities may not square with their fairness preferences, e.g., people may dislike the extent of gender pay gaps, or they may think that the returns to long working hours are too low. Second, they may have biased beliefs about actual inequality, e.g., people may overestimate the size of gender pay gaps, or they may underestimate the earnings effects of working hours. These examples illustrate that an understanding of fairness perceptions requires in-depth knowledge of citizens' fairness preferences and their beliefs about inequality in different domains of the labor market. However, to date, there is no harmonized data collection that integrates these elements and enables us to measure perceived unfairness and understand its consequences for society on a global scale. As a consequence, our current knowledge is either based on strong assumptions about peoples' fairness preferences and beliefs about inequality, or confined to single-country studies that cannot take account of the diversity of perceptions across countries with different geographic, cultural, and economic characteristics.In my FLF, I will address this gap. I will lead a network of stakeholders including the general public, policymakers, and scientists to identify domains of labor market inequality that are at the core of fairness perceptions; collect corresponding data on preferences and beliefs about labor market inequality in 50 countries worldwide; and construct measures of perceived unfairness that allow us to assess the implications of perceived unfairness for important societal outcomes that are essential building blocks for well-functioning societies.In years 1-4, I will divide my FLF into three working packages (WPs):WP1 - Develop a measurement framework and associated survey module taking into account the views of key stakeholders such as the general public, policymakers, and academics from diverse cultural and economic backgrounds (Years 1-2).WP2 - Collect harmonized data on fairness preferences and inequality beliefs in 50 countries (incl. the four nations of the UK) representing a broad range of geographic, cultural, and economic characteristics (Years 2-3).WP3 - Analyze the anatomy of perceived unfairness and its implications for societal outcomes including support for democracy, trust in institutions, and support for public policies (Years 3-4).In years 5-7, I will build on the initial findings and use both field experiments and quasi-experimental variation from policy reforms to investigate whether preferences and beliefs regarding different domains of labor market inequality are malleable by policy intervention. Thereby, I will provide important insights for civil society organizations and policymakers on how to address perceived unfairness and discontent with current economic systems.This agenda will improve our understanding of one of the most widely debated social issues of our times: unfair inequality in labor markets. I will analyze this phenomenon on a global scale while integrating the perspectives of a diverse set of stakeholders. My FLF combines an ambitious and multidisciplinary research programme that will generate a series of high-profile journal articles with a personalized programme for my professional development. These elements make the FLF a unique opportunity to establish myself as a leading expert regarding inequality and fairness in Europe and beyond.
“每个人类社会都必须证明其不平等的合理性:除非找到原因,否则整个政治和社会大厦将面临崩溃的危险”——托马斯·皮凯蒂不同社会的公民如何看待不平等的公平性?回答这个问题是理解日益加剧的社会紧张局势以及为解决当前对现有经济和政治制度普遍不满的政策设计提供信息的关键。公民可能认为不平等是不公平的原因有两个。首先,实际的不平等可能与他们的公平偏好不符,例如,人们可能不喜欢性别工资差距的程度,或者他们可能认为长时间工作的回报太低。其次,他们可能对实际不平等存在偏见,例如,人们可能高估了性别工资差距的大小,或者他们可能低估了工作时间对收入的影响。这些例子表明,要理解公平观念,就需要深入了解公民的公平偏好以及他们对劳动力市场不同领域不平等的看法。然而,迄今为止,还没有统一的数据收集来整合这些要素,使我们能够衡量感知到的不公平现象并了解其在全球范围内对社会造成的后果。因此,我们当前的知识要么基于对人们公平偏好和不平等信念的强烈假设,要么仅限于单一国家的研究,无法考虑具有不同地理、文化和经济特征的国家之间观念的多样性在我的 FLF 中,我将解决这个差距。我将领导一个包括公众、政策制定者和科学家在内的利益相关者网络,以确定作为公平观念核心的劳动力市场不平等领域;收集全球 50 个国家关于劳动力市场不平等的偏好和信念的相应数据;并构建感知不公平的衡量标准,使我们能够评估感知不公平对重要社会成果的影响,这些社会成果是社会良好运作的重要组成部分。在第 1-4 年,我将把我的 FLF 分为三个工作包 (WP): WP1 - 制定衡量框架和相关调查模块,考虑主要利益相关者的观点,例如来自不同文化和经济背景的公众、政策制定者和学者(第 1-2 年)。 WP2 - 收集统一数据代表广泛地理、文化和经济特征的 50 个国家(包括英国的四个国家)的公平偏好和不平等信念(第 2-3 年)。WP3 - 分析感知不公平及其对社会的影响成果包括对民主的支持、对机构的信任以及对公共政策的支持(第 3-4 年)。在第 5-7 年,我将在初步发现的基础上,使用现场实验和准实验政策改革的变化,以调查有关劳动力市场不平等不同领域的偏好和信念是否可以通过政策干预来调整。因此,我将为民间社会组织和政策制定者提供关于如何解决人们认为的不公平和对当前经济体系的不满的重要见解。该议程将增进我们对当今时代最广泛争论的社会问题之一的理解:劳动力市场的不公平不平等。我将在全球范围内分析这一现象,同时整合不同利益相关者的观点。我的 FLF 结合了雄心勃勃的多学科研究计划,将生成一系列备受瞩目的期刊文章和针对我的专业发展的个性化计划。这些因素使 FLF 成为一个独特的机会,让我成为欧洲及其他地区不平等和公平问题的领先专家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Hufe其他文献
Paul Hufe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
即时情绪影响机会公平决策的认知神经机制及情绪调节的干预作用
- 批准号:32300857
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
教育公平视角下在线学习平台的智能学习策略研究
- 批准号:72301269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高效公平的个性化联邦学习算法与理论
- 批准号:62376110
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
城市间绿地公平性的分异机制和健康效应研究
- 批准号:42301238
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向公平性与准确性统一的推荐方法研究:基于模型偏差消解视角
- 批准号:72301239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fair Game: valuing the bio-cultural heritage of fallow deer and their venison for food security, sustainable woodlands and biodiversity
公平游戏:重视小鹿及其鹿肉的生物文化遗产,以促进粮食安全、可持续林地和生物多样性
- 批准号:
AH/Z505675/1 - 财政年份:2024
- 资助金额:
$ 185.98万 - 项目类别:
Research Grant
国別ネットゼロ目標の倫理的・政策的妥当性:複数の公平性原則からの新たな評価
国家净零目标的伦理和政策有效性:多重公平原则的新评估
- 批准号:
24K15419 - 财政年份:2024
- 资助金额:
$ 185.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
将来世代に対する公平選好と主観的信念の理論・実証研究
子孙后代公平偏好与主观信念的理论与实证研究
- 批准号:
23K25511 - 财政年份:2024
- 资助金额:
$ 185.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Tri-fair Biometrics: 生体認証の3要件を満たす公平な生体認証システムの実現
Tri-fair Biometrics:实现公平的生物识别认证系统,满足生物识别认证的三个要求
- 批准号:
23K28085 - 财政年份:2024
- 资助金额:
$ 185.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
- 批准号:
2339746 - 财政年份:2024
- 资助金额:
$ 185.98万 - 项目类别:
Continuing Grant