The First Environmental Digital Twin Dedicated to Understanding Tropical Wetland Methane Emissions for Improved Predictions of Climate Change

第一个致力于了解热带湿地甲烷排放以改进气候变化预测的环境数字孪生

基本信息

  • 批准号:
    MR/X033139/1
  • 负责人:
  • 金额:
    $ 161.82万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Methane (CH4) is a major greenhouse gas. Its short atmospheric lifetime (~9 years) means we can mitigate its emissions and warming effects. At COP26, countries signed up to the Methane Pledge, strengthened at COP27, committing to reduce emissions in 2030 by 30%, eliminating over 0.2C of global warming by 2050.The challenge is that methane has many sources, man-made and natural. Man-made emissions include significant contributions from fossil fuels (111 Tg CH4 yr-1) and agriculture/waste (217 Tg CH4 yr-1), with natural signals dominated by wetland emissions (181 Tg CH4 yr-1, >30% of total emissions). Estimates suggest tropical wetlands contribute >65% of all wetland emissions, over 20% of the total global methane budget. However, these estimates are hugely uncertain. To fully understand the methane budget, we must monitor these natural emissions and understand how, when and where they are produced and how they might change under future climate scenarios. Failure to do so would restrict capability to inform policy and take mitigation action.The problem is becoming more urgent. Recent years have seen a rapid and surprising increase in atmospheric methane. Global values increased by 15 ppb in 2020 and 18 ppb in 2021, compared to 5-12 ppb in recent years. This acceleration is alarming and points to significant climate-feedbacks that are not fully understood nor expected. Studies using satellite data generated by my work (e.g. Qu et al., 2022, Feng et al., 2022) have reached the conclusion that tropical wetlands are the likely source of this new, and as of yet unexplained, increase in the methane growth rate. We know methane is produced in wetlands by microbes but questions remain on the effect of factors such as temperature, water level and soil type. State-of-the-art process-based land surface models can produce wetland methane emissions but huge discrepancies between model estimates limit their utility and assessing these models against observations is key. Importantly, we also do not know how large these methane-producing wetland areas are, as they continually change in size in response to rainfall and riverflow. Therefore, even if models capture the correct wetland methane climate-response, the wetland extent itself will limit ability to accurately estimate emissions. The problem therefore is two-fold: 1) Can we reconcile large discrepancies in our ability to model the wetland methane emission response to climate feedbacks? 2) Can we dramatically improve our estimates of wetland extent to constrain the spatial/temporal changes in methane emissions?This fellowship will use satellite observations and land surface models to build an innovative and dedicated Wetland Digital Twin; a machine-learning system capable of estimating methane produced by wetlands, transforming our understanding of the causes of methane emissions and responses to the changing climate.In parallel, we need much better knowledge of wetland locations and how they change over time. By applying new machine-learning methods to very-high-resolution satellite imagery and combining with advanced hydrological modelling, I will better map these wetland areas and understand their dynamics. To achieve this, I will work closely with Project Partners, specialising in land surface modelling (GCP, UKCEH, UK Met Office), machine learning and artificial intelligence (ESA Phi-Lab, NEODAAS), IT infrastructure (NEODAAS, JASMIN, CGI), high-resolution remote sensing (Planet) and climate modelling (UK Met Office) while also engaging with a range of Stakeholders from wetland ecosystem specialists to policymakers (e.g. COP/IPCC, UNEP, RAMSAR, CIFOR, CEOS/GCOS).This new Wetland Digital Twin capability, driven by Earth Observation data and powered by machine learning, will allow us to develop climate services that are capable of providing decision-support for policymakers and enable better understanding of the climate response of these critical ecosystems.
甲烷(CH4)是主要的温室气体。它的大气寿命短(〜9年)意味着我们可以减轻其排放和变暖的影响。在COP26,国家签署了甲烷承诺,在COP27时加强了,承诺在2030年将排放量减少30%,消除了2050年全球变暖的0.2摄氏度。挑战是甲烷具有许多来源,人造和自然。人造的排放包括化石燃料(111 TG CH4 YR-1)和农业/废物(217 TG CH4 YR-1)的重大贡献,其自然信号由湿地排放(181 TG CH4 YR-1,> 30%的排放量中的30%)主导。估计表明,热带湿地占所有湿地排放量的65%,超过全球甲烷预算的20%。但是,这些估计值非常不确定。为了充分了解甲烷预算,我们必须监视这些自然排放,并了解如何,何时何地生产它们以及它们如何在未来的气候情况下改变。否则,将限制能够为政策提供信息并采取缓解行动的能力。问题变得越来越紧迫。近年来,大气中的甲烷迅速增加。 2020年,全球价值在2021年增加了15 ppb,近年来为5-12 ppb。这种加速度令人震惊,并指出了尚未完全理解或期望的重要气候反馈。使用我的工作产生的卫星数据(例如,Qu等,2022,Feng等,2022)的研究得出的结论是,热带湿地可能是这种新的来源,但尚未解释,甲烷生长速率的提高。我们知道甲烷是由微生物在湿地中产生的,但问题仍然取决于温度,水位和土壤类型等因素的影响。基于过程的最先进的陆地表面模型可以产生湿地甲烷排放,但是模型估算之间的巨大差异限制了它们的效用,并根据观察评估这些模型是关键。重要的是,我们也不知道这些产生甲烷的湿地区域有多大,因为它们会因降雨和河流而不断变化。因此,即使模型捕获正确的湿地甲烷气候响应,湿地范围本身也将限制准确估计排放的能力。因此,问题是两个方面:1)我们可以在对湿地甲烷排放对气候反馈的响应建模能力方面是否可以解决巨大的差异? 2)我们能否显着改善湿地范围的估计,以限制甲烷排放的空间/时间变化?这项奖学金将使用卫星观测和陆地表面模型来建立创新和专用的湿地数字双胞胎;一个能够估算湿地产生的甲烷的机器学习系统,改变了我们对甲烷排放的原因和对气候变化的反应的理解。在平行的情况下,我们需要更好地了解湿地位置及其随着时间的变化。通过将新的机器学习方法应用于非常高分辨率的卫星图像并与先进的水文建模相结合,我将更好地绘制这些湿地区域并了解它们的动态。为此,我将与项目合作伙伴紧密合作,专门研究陆地表面建模(GCP,UKCEH,英国大都会办公室),机器学习和人工智能(ESA PHI-LAB,NEODAAS),IT基础架构(NE​​ODAAS,JAMSIN,JAMSIN,CGI),高分辨率的远程感应(Planet)和ECOSS的ECORISTIST(UK METSISTIST),以及ECORSISTION(UK METSISTING),范围为范围,范围为范围,在范围内启动了一项范围,以范围内的范围来启动一项范围。决策者(例如COP/IPCC,UNEP,RAMSAR,CIFOR,CEOS/GCOS)。这是由地球观察数据驱动并由机器学习提供支持的新湿地数字双胞胎能力,将使我们能够开发能够为政策制定者提供决策的气候服务,并能够更好地了解这些关键的Ecososystems的气候响应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Parker其他文献

Optimizing hemadsorption therapy with model predictive control
  • DOI:
    10.1016/j.jcrc.2008.03.033
  • 发表时间:
    2008-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Justin Hogg;Gilles Clermont;John Kellum;Robert Parker
  • 通讯作者:
    Robert Parker
Closing the high seas to fisheries: Possible impacts on aquaculture
  • DOI:
    10.1016/j.marpol.2020.103854
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Peñalosa Martinell;Tim Cashion;Robert Parker;U. Rashid Sumaila
  • 通讯作者:
    U. Rashid Sumaila
Poster session 2Peptide identification methodology introduces bias in the detected repertoire of MHC presented peptides
  • DOI:
    10.1016/j.molimm.2022.05.085
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Parker;Xu Peng;Nicola Ternette
  • 通讯作者:
    Nicola Ternette
Determinants of the coproduction of public health during the COVID-19 pandemic: A mixed-methods study of students behaviors on a university campus
  • DOI:
    10.1016/j.ssaho.2024.100886
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Benjamin Y. Clark;Robert Parker
  • 通讯作者:
    Robert Parker
PSA density does not improve predictive accuracy of the UCSF‐CAPRA score
PSA 密度不会提高 UCSF-CAPRA 评分的预测准确性
  • DOI:
    10.1002/pros.24533
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robert Parker;Alexander Bell;Kevin Chang;S. Greenberg;S. Washington;J. Cowan;Peter R. Carroll;M. Cooperberg
  • 通讯作者:
    M. Cooperberg

Robert Parker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Parker', 18)}}的其他基金

Lexicon of Greek Personal Names- Lower Egypt and the Fayum
希腊人名词典 - 下埃及和法尤姆
  • 批准号:
    AH/S005005/1
  • 财政年份:
    2019
  • 资助金额:
    $ 161.82万
  • 项目类别:
    Research Grant
Lexicon of Greek Personal Names
希腊人名词典
  • 批准号:
    AH/M01133X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 161.82万
  • 项目类别:
    Research Grant
Engineering Personalized Cancer Chemotherapy Schedules
设计个性化癌症化疗方案
  • 批准号:
    1235182
  • 财政年份:
    2012
  • 资助金额:
    $ 161.82万
  • 项目类别:
    Standard Grant
REU Site: Engineering Tools for Decision Support in Systems Medicine
REU 网站:系统医学决策支持工程工具
  • 批准号:
    1156899
  • 财政年份:
    2012
  • 资助金额:
    $ 161.82万
  • 项目类别:
    Continuing Grant
Lexicon of Greek Personal Names
希腊人名词典
  • 批准号:
    AH/J003980/1
  • 财政年份:
    2012
  • 资助金额:
    $ 161.82万
  • 项目类别:
    Research Grant
Lexicon of Greek Personal Names: Coastal Asia Minor
希腊人名词典:小亚细亚沿海地区
  • 批准号:
    AH/E509959/1
  • 财政年份:
    2007
  • 资助金额:
    $ 161.82万
  • 项目类别:
    Research Grant
CAREER: Control Design using Data-Driven Models: Exploiting Model Structure
职业:使用数据驱动模型进行控制设计:利用模型结构
  • 批准号:
    0134129
  • 财政年份:
    2002
  • 资助金额:
    $ 161.82万
  • 项目类别:
    Standard Grant
CAREER: Vibration and Stability of Spinning Disk-Spindle Systems and High-Speed Belt Drives
职业:旋转盘主轴系统和高速皮带传动的振动和稳定性
  • 批准号:
    9875635
  • 财政年份:
    1999
  • 资助金额:
    $ 161.82万
  • 项目类别:
    Standard Grant
Homicide in Urban America: 1950-1980
美国城市凶杀案:1950-1980
  • 批准号:
    9196182
  • 财政年份:
    1991
  • 资助金额:
    $ 161.82万
  • 项目类别:
    Continuing Grant
Graduate Research Fellowship Program
研究生研究奖学金计划
  • 批准号:
    9054704
  • 财政年份:
    1990
  • 资助金额:
    $ 161.82万
  • 项目类别:
    Fellowship Award

相似国自然基金

智慧城市导向下基于街景视觉表征的“人-环境”数字互联机制
  • 批准号:
    52308015
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
淡水养殖数字化的环境经济效应、农户响应机制与政策优化路径
  • 批准号:
    72303214
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向极端环境下望远镜驱动系统非预期状态的数字孪生与决策智能
  • 批准号:
    12303089
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于环境感知的数字孪生预测信道建模研究
  • 批准号:
    62301151
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
环境监管数字化转型与企业环保应对研究:来自设立污染源在线监控系统的视角
  • 批准号:
    72302111
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Life Course Developmental and Reproductive Predictors of Increased Mammographic Breast Density in Black Women
黑人女性乳房 X 线摄影乳房密度增加的生命历程发育和生殖预测因子
  • 批准号:
    10604784
  • 财政年份:
    2023
  • 资助金额:
    $ 161.82万
  • 项目类别:
A Causal Analysis of the Complex Mental Health Impacts of the Climate Crisis in Young People
气候危机对年轻人复杂心理健康影响的因果分析
  • 批准号:
    10359497
  • 财政年份:
    2022
  • 资助金额:
    $ 161.82万
  • 项目类别:
Tuskegee University Health Disparities Biomedical Research Center
塔斯基吉大学健康差异生物医学研究中心
  • 批准号:
    10606891
  • 财政年份:
    2022
  • 资助金额:
    $ 161.82万
  • 项目类别:
Childrens flame retardant exposures measured by passive wristbands: Sex specific associations, social adversity, and socio-cognitive development
通过被动腕带测量儿童的阻燃剂暴露:性别特异性关联、社会逆境和社会认知发展
  • 批准号:
    10792412
  • 财政年份:
    2019
  • 资助金额:
    $ 161.82万
  • 项目类别:
The Infant Development and the Environmental Study (TIDES)
婴儿发育和环境研究(潮汐)
  • 批准号:
    8080442
  • 财政年份:
    2009
  • 资助金额:
    $ 161.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了