The First Environmental Digital Twin Dedicated to Understanding Tropical Wetland Methane Emissions for Improved Predictions of Climate Change
第一个致力于了解热带湿地甲烷排放以改进气候变化预测的环境数字孪生
基本信息
- 批准号:MR/X033139/1
- 负责人:
- 金额:$ 161.82万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Methane (CH4) is a major greenhouse gas. Its short atmospheric lifetime (~9 years) means we can mitigate its emissions and warming effects. At COP26, countries signed up to the Methane Pledge, strengthened at COP27, committing to reduce emissions in 2030 by 30%, eliminating over 0.2C of global warming by 2050.The challenge is that methane has many sources, man-made and natural. Man-made emissions include significant contributions from fossil fuels (111 Tg CH4 yr-1) and agriculture/waste (217 Tg CH4 yr-1), with natural signals dominated by wetland emissions (181 Tg CH4 yr-1, >30% of total emissions). Estimates suggest tropical wetlands contribute >65% of all wetland emissions, over 20% of the total global methane budget. However, these estimates are hugely uncertain. To fully understand the methane budget, we must monitor these natural emissions and understand how, when and where they are produced and how they might change under future climate scenarios. Failure to do so would restrict capability to inform policy and take mitigation action.The problem is becoming more urgent. Recent years have seen a rapid and surprising increase in atmospheric methane. Global values increased by 15 ppb in 2020 and 18 ppb in 2021, compared to 5-12 ppb in recent years. This acceleration is alarming and points to significant climate-feedbacks that are not fully understood nor expected. Studies using satellite data generated by my work (e.g. Qu et al., 2022, Feng et al., 2022) have reached the conclusion that tropical wetlands are the likely source of this new, and as of yet unexplained, increase in the methane growth rate. We know methane is produced in wetlands by microbes but questions remain on the effect of factors such as temperature, water level and soil type. State-of-the-art process-based land surface models can produce wetland methane emissions but huge discrepancies between model estimates limit their utility and assessing these models against observations is key. Importantly, we also do not know how large these methane-producing wetland areas are, as they continually change in size in response to rainfall and riverflow. Therefore, even if models capture the correct wetland methane climate-response, the wetland extent itself will limit ability to accurately estimate emissions. The problem therefore is two-fold: 1) Can we reconcile large discrepancies in our ability to model the wetland methane emission response to climate feedbacks? 2) Can we dramatically improve our estimates of wetland extent to constrain the spatial/temporal changes in methane emissions?This fellowship will use satellite observations and land surface models to build an innovative and dedicated Wetland Digital Twin; a machine-learning system capable of estimating methane produced by wetlands, transforming our understanding of the causes of methane emissions and responses to the changing climate.In parallel, we need much better knowledge of wetland locations and how they change over time. By applying new machine-learning methods to very-high-resolution satellite imagery and combining with advanced hydrological modelling, I will better map these wetland areas and understand their dynamics. To achieve this, I will work closely with Project Partners, specialising in land surface modelling (GCP, UKCEH, UK Met Office), machine learning and artificial intelligence (ESA Phi-Lab, NEODAAS), IT infrastructure (NEODAAS, JASMIN, CGI), high-resolution remote sensing (Planet) and climate modelling (UK Met Office) while also engaging with a range of Stakeholders from wetland ecosystem specialists to policymakers (e.g. COP/IPCC, UNEP, RAMSAR, CIFOR, CEOS/GCOS).This new Wetland Digital Twin capability, driven by Earth Observation data and powered by machine learning, will allow us to develop climate services that are capable of providing decision-support for policymakers and enable better understanding of the climate response of these critical ecosystems.
甲烷 (CH4) 是一种主要的温室气体。它的大气寿命较短(约 9 年),这意味着我们可以减轻其排放和变暖影响。在 COP26 上,各国签署了《甲烷承诺》,并在 COP27 上得到加强,承诺到 2030 年减排 30%,到 2050 年消除全球变暖超过 0.2℃。挑战在于甲烷有多种来源,包括人造的和自然的。人为排放包括化石燃料 (111 Tg CH4 yr-1) 和农业/废物 (217 Tg CH4 yr-1) 的显着贡献,自然信号以湿地排放为主 (181 Tg CH4 yr-1,>30%总排放量)。据估计,热带湿地排放量占所有湿地排放量的 65% 以上,占全球甲烷预算总量的 20% 以上。然而,这些估计具有很大的不确定性。为了充分了解甲烷预算,我们必须监测这些自然排放,并了解它们的产生方式、时间和地点,以及它们在未来气候情景下可能如何变化。如果不这样做,就会限制通报政策和采取缓解行动的能力。这个问题正变得更加紧迫。近年来,大气中的甲烷含量迅速且令人惊讶地增加。 2020 年全球价值将增加 15 ppb,2021 年将增加 18 ppb,而近年来的增幅为 5-12 ppb。这种加速令人震惊,并表明尚未完全理解或预期的重大气候反馈。使用我的工作生成的卫星数据进行的研究(例如 Qu 等人,2022 年,Feng 等人,2022 年)得出的结论是,热带湿地可能是这种新的、迄今为止尚未解释的甲烷增长增加的来源速度。我们知道湿地中的微生物会产生甲烷,但温度、水位和土壤类型等因素的影响仍然存在疑问。最先进的基于过程的地表模型可以产生湿地甲烷排放,但模型估计之间的巨大差异限制了其效用,根据观测结果评估这些模型是关键。重要的是,我们也不知道这些产生甲烷的湿地面积有多大,因为它们的大小会随着降雨和河水流量的变化而不断变化。因此,即使模型捕捉到了正确的湿地甲烷气候响应,湿地范围本身也会限制准确估算排放量的能力。因此,问题有两个方面:1)我们能否调和我们模拟湿地甲烷排放对气候反馈的响应能力的巨大差异? 2)我们能否大幅改进对湿地范围的估计,以限制甲烷排放的时空变化?该奖学金将利用卫星观测和地表模型来构建创新且专用的湿地数字孪生;一个能够估计湿地产生的甲烷的机器学习系统,改变我们对甲烷排放原因和对气候变化反应的理解。与此同时,我们需要更好地了解湿地位置及其随时间变化的情况。通过将新的机器学习方法应用于超高分辨率卫星图像并结合先进的水文模型,我将更好地绘制这些湿地区域的地图并了解它们的动态。为了实现这一目标,我将与项目合作伙伴密切合作,专门从事陆地表面建模(GCP、UKCEH、英国气象局)、机器学习和人工智能(ESA Phi-Lab、NEODAAS)、IT 基础设施(NEODAAS、JASMIN、CGI) 、高分辨率遥感(地球)和气候建模(英国气象局),同时还与从湿地生态系统专家到政策制定者(例如 COP/IPCC、 UNEP、RAMSAR、CIFOR、CEOS/GCOS)。这种新的湿地数字孪生功能由地球观测数据驱动并由机器学习提供支持,将使我们能够开发能够为政策制定者提供决策支持并更好地理解的气候服务这些关键生态系统的气候响应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Parker其他文献
Measurement of Medial Tibial Eminence Dimensions for the Clinical Evaluation of ACL-Injured Knees: A Comparison between CT and MRI
胫骨内侧隆起尺寸测量用于 ACL 损伤膝关节临床评估:CT 与 MRI 的比较
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
H. Stepanyan;J. Nazaroff;Ngoc;Robert Parker;Toshimi Tando;H. Yoshioka;Dean Wang - 通讯作者:
Dean Wang
The Influence of Place on the Willingness to Pay for Ecosystem Services
地方对生态系统服务支付意愿的影响
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Max Nielsen;Patricia Sussman;Drew E. Bennett;H. Gosnell;Robert Parker - 通讯作者:
Robert Parker
Measuring Exposure to Cannabis use and other Substance use in Remote Aboriginal Populations in Northern Australia: Evaluation of A ‘Community Epidemiology’ Approach using Proxy Respondents
测量澳大利亚北部偏远原住民的大麻使用和其他物质使用情况:使用代理受访者评估“社区流行病学”方法
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
A. Clough;Sheree Cairney;Peter H N d'Abbs;Robert Parker;P. Maruff;D. Gray;B. O'reilly - 通讯作者:
B. O'reilly
An adult formulation of a five-component acellular pertussis vaccine combined with diphtheria and tetanus toxoids is safe and immunogenic in adolescents and adults.
与白喉和破伤风类毒素结合的五组分无细胞百日咳疫苗的成人制剂对于青少年和成人来说是安全的且具有免疫原性。
- DOI:
10.1016/s0264-410x(99)00415-6 - 发表时间:
2000 - 期刊:
- 影响因子:5.5
- 作者:
Scott A. Halperin;Bruce Smith;M. Russell;Paul Hasselback;Paul Hasselback;R. Guasparini;Danuta M. Skowronski;W. Meekison;Robert Parker;P. Lavigne;L. Barreto - 通讯作者:
L. Barreto
A Brave New World: introducing the planets online
美丽新世界:在线介绍行星
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
N. Spence;D. Groom;O. Marco;Robert Parker;M. Ireland;M. Wardle - 通讯作者:
M. Wardle
Robert Parker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Parker', 18)}}的其他基金
Lexicon of Greek Personal Names- Lower Egypt and the Fayum
希腊人名词典 - 下埃及和法尤姆
- 批准号:
AH/S005005/1 - 财政年份:2019
- 资助金额:
$ 161.82万 - 项目类别:
Research Grant
Engineering Personalized Cancer Chemotherapy Schedules
设计个性化癌症化疗方案
- 批准号:
1235182 - 财政年份:2012
- 资助金额:
$ 161.82万 - 项目类别:
Standard Grant
REU Site: Engineering Tools for Decision Support in Systems Medicine
REU 网站:系统医学决策支持工程工具
- 批准号:
1156899 - 财政年份:2012
- 资助金额:
$ 161.82万 - 项目类别:
Continuing Grant
Lexicon of Greek Personal Names: Coastal Asia Minor
希腊人名词典:小亚细亚沿海地区
- 批准号:
AH/E509959/1 - 财政年份:2007
- 资助金额:
$ 161.82万 - 项目类别:
Research Grant
CAREER: Control Design using Data-Driven Models: Exploiting Model Structure
职业:使用数据驱动模型进行控制设计:利用模型结构
- 批准号:
0134129 - 财政年份:2002
- 资助金额:
$ 161.82万 - 项目类别:
Standard Grant
CAREER: Vibration and Stability of Spinning Disk-Spindle Systems and High-Speed Belt Drives
职业:旋转盘主轴系统和高速皮带传动的振动和稳定性
- 批准号:
9875635 - 财政年份:1999
- 资助金额:
$ 161.82万 - 项目类别:
Standard Grant
Homicide in Urban America: 1950-1980
美国城市凶杀案:1950-1980
- 批准号:
9196182 - 财政年份:1991
- 资助金额:
$ 161.82万 - 项目类别:
Continuing Grant
Graduate Research Fellowship Program
研究生研究奖学金计划
- 批准号:
9054704 - 财政年份:1990
- 资助金额:
$ 161.82万 - 项目类别:
Fellowship Award
相似国自然基金
基于环境感知的数字孪生预测信道建模研究
- 批准号:62301151
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
智慧城市导向下基于街景视觉表征的“人-环境”数字互联机制
- 批准号:52308015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同地理环境下农业产业集群的数字化转型机理与实现路径研究
- 批准号:42371218
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
淡水养殖数字化的环境经济效应、农户响应机制与政策优化路径
- 批准号:72303214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数字技术与环境规制耦合推动城市绿色发展的影响机制及作用路径研究
- 批准号:72304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Life Course Developmental and Reproductive Predictors of Increased Mammographic Breast Density in Black Women
黑人女性乳房 X 线摄影乳房密度增加的生命历程发育和生殖预测因子
- 批准号:
10604784 - 财政年份:2023
- 资助金额:
$ 161.82万 - 项目类别:
A Causal Analysis of the Complex Mental Health Impacts of the Climate Crisis in Young People
气候危机对年轻人复杂心理健康影响的因果分析
- 批准号:
10359497 - 财政年份:2022
- 资助金额:
$ 161.82万 - 项目类别:
Tuskegee University Health Disparities Biomedical Research Center
塔斯基吉大学健康差异生物医学研究中心
- 批准号:
10606891 - 财政年份:2022
- 资助金额:
$ 161.82万 - 项目类别:
Childrens flame retardant exposures measured by passive wristbands: Sex specific associations, social adversity, and socio-cognitive development
通过被动腕带测量儿童的阻燃剂暴露:性别特异性关联、社会逆境和社会认知发展
- 批准号:
10792412 - 财政年份:2019
- 资助金额:
$ 161.82万 - 项目类别:
The Infant Development and the Environmental Study (TIDES)
婴儿发育和环境研究(潮汐)
- 批准号:
8080442 - 财政年份:2009
- 资助金额:
$ 161.82万 - 项目类别: