Molecular mechanisms underlying divergent incretin receptor responses in alpha versus beta cells
α细胞与β细胞中肠促胰岛素受体反应不同的分子机制
基本信息
- 批准号:MR/X021467/1
- 负责人:
- 金额:$ 75.13万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Diabetes is a disease that has reached epidemic proportions, with millions of people dying or suffering from a myriad of associated complications. Amongst the current treatments for the disease are incretin therapies, which are based on mimicking the function of incretin hormones, secreted from the gut in response to food intake and able to stimulate the release of insulin from the pancreas by binding specifically to proteins at the surface of cells in the pancreas called receptors. The incretins can also activate their target receptors in the brain to promote fullness and hunger reduction which is an added benefit for diabetic patients who require weight loss. There are two incretins, GLP-1 and GIP, and each one binds to its own receptor. Most incretin therapies to date have been directed at the GLP-1 receptor because the GIP receptor does not work at all in diabetic patients. However, we now know that if blood sugar levels are brought under control by other means, the GIP receptor will start working again, and as this is a very strong receptor that can work even better than the GLP-1 receptor in normal conditions, there is a good case for developing therapies that target both receptors at the same time. This has recently been achieved with a new medicine called tirzepatide, giving superior effects in controlling blood sugar levels as well as promoting weight loss. However, the way that these two receptors work in the pancreas is not completely clear. While they both promote insulin release from pancreatic beta cells, the GLP-1 receptor inhibits the release of another hormone, glucagon, from another cell type in the pancreas called alpha, which balances the effect of insulin, while the GIP receptor promotes glucagon release from these alpha cells. It is also not clear if glucagon is good or bad for diabetes, as on the one hand it promotes blood sugar levels to rise because of its effects in the liver, while on the other hand it makes beta cells in the pancreas release more insulin, so latest investigations suggest that it is actually an overall beneficial hormone for diabetic patients. In addition, the two receptors are not equally distributed amongst alpha and beta cells. In fact, there is considerably more GLP-1 receptor than GIP receptor in beta cells and much less GLP-1 receptor than GIP receptor in alpha cells. Despite this, the GIP receptor appears to function better than the GLP-1 receptor in healthy beta cells, while the GLP-1 receptor works almost as well as the GIP receptor in alpha cells in spite of its very low expression level. It is therefore likely that these receptors will work in different ways in these two cell types, as the amount of signal they send does not directly correlate with the amount of receptor there is in each one, and in alpha cells they are actually acting in opposite ways. In this project, we plan to clarify how exactly each receptor works in alpha versus beta cells by investigating how they move across the cell, the signals they send in each cell type, the partners they interact with and how much they depend on the action of an important known regulator of their function called beta-arrestin 2. Finally, we will also analyse how natural genetic variants of each receptor that exist in the general population can change the way these receptors function in the alpha versus beta cells of the pancreas. Overall, this project will help us understand why these receptors work differently to each other, why they have different strengths making them work better in some cases despite being present at much lower levels, and how genetic variation across individuals can modify the way they work in the two pancreatic cell types studied. This study will help us predict how well incretin therapies targeting each receptor will work for specific individuals, and give us new ideas about how best to target each receptor in alpha and beta cells to design newly improved therapies in the fight against type 2 diabetes.
糖尿病是一种已达到流行程度的疾病,数百万人死亡或患有无数相关并发症。目前治疗该疾病的方法之一是肠促胰岛素疗法,该疗法基于模仿肠促胰岛素激素的功能,肠促胰岛素激素是肠道响应食物摄入而分泌的,并且能够通过与表面蛋白质特异性结合来刺激胰腺释放胰岛素胰腺中的细胞称为受体。肠降血糖素还可以激活大脑中的目标受体,以促进饱腹感和减少饥饿感,这对于需要减肥的糖尿病患者来说是一个额外的好处。有两种肠降血糖素:GLP-1 和 GIP,每一种都与自己的受体结合。迄今为止,大多数肠促胰岛素疗法都是针对 GLP-1 受体,因为 GIP 受体在糖尿病患者中根本不起作用。然而,我们现在知道,如果通过其他方式控制血糖水平,GIP受体将再次开始发挥作用,并且由于这是一种非常强的受体,在正常情况下甚至可以比GLP-1受体发挥更好的作用,因此这是开发同时针对两种受体的疗法的一个很好的例子。最近,一种名为替西帕肽的新药实现了这一目标,它在控制血糖水平和促进减肥方面具有卓越的效果。然而,这两种受体在胰腺中的作用方式尚不完全清楚。虽然它们都促进胰腺β细胞释放胰岛素,但GLP-1受体抑制胰腺中另一种称为α的细胞类型释放另一种激素——胰高血糖素,从而平衡胰岛素的作用,而GIP受体则促进胰高血糖素的释放。这些阿尔法细胞。目前还不清楚胰高血糖素对糖尿病是好还是坏,因为一方面它会因为对肝脏的影响而促进血糖水平升高,而另一方面它会使胰腺中的β细胞释放更多的胰岛素,因此,最新的研究表明,它实际上是一种对糖尿病患者总体有益的激素。此外,这两种受体在α细胞和β细胞中的分布并不均匀。事实上,β 细胞中的 GLP-1 受体比 GIP 受体多得多,而 α 细胞中的 GLP-1 受体比 GIP 受体少得多。尽管如此,GIP 受体在健康 β 细胞中的功能似乎比 GLP-1 受体更好,而 GLP-1 受体在 α 细胞中的功能几乎与 GIP 受体一样,尽管其表达水平非常低。因此,这些受体很可能在这两种细胞类型中以不同的方式发挥作用,因为它们发送的信号量与每种细胞中的受体数量并不直接相关,而在α细胞中,它们实际上以相反的方式起作用。方式。在这个项目中,我们计划通过研究它们如何跨细胞移动、它们在每种细胞类型中发送的信号、它们相互作用的伙伴以及它们在多大程度上依赖于α细胞和β细胞的作用,来阐明每种受体在α细胞和β细胞中的确切作用。一种重要的已知功能调节因子,称为 β-arrestin 2。最后,我们还将分析普通人群中存在的每种受体的自然遗传变异如何改变这些受体在胰腺 α 细胞和 β 细胞中的功能方式。总的来说,这个项目将帮助我们理解为什么这些受体的工作方式彼此不同,为什么它们有不同的优势,使它们在某些情况下工作得更好,尽管存在的水平要低得多,以及个体之间的遗传变异如何改变它们的工作方式研究的两种胰腺细胞类型。这项研究将帮助我们预测针对每种受体的肠促胰素疗法对特定个体的效果如何,并为我们提供关于如何最好地针对α和β细胞中的每种受体来设计新的改进疗法来对抗2型糖尿病的新想法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alejandra Tomas其他文献
Pro-survival role of gelsolin in mouse beta-cells.
凝溶胶蛋白在小鼠β细胞中的促生存作用。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:7.7
- 作者:
Barbara Yermen;Alejandra Tomas;P. Halban - 通讯作者:
P. Halban
Stress-specific p38 MAPK activation is sufficient to drive EGFR endocytosis but not its nuclear translocation
应激特异性 p38 MAPK 激活足以驱动 EGFR 内吞作用,但不能驱动其核转位
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:4
- 作者:
Alejandra Tomas;Sylwia Jones;S. Vaughan;D. Hochhauser;C. Futter - 通讯作者:
C. Futter
Stress reveals new destination for EGF receptor
压力揭示了 EGF 受体的新目的地
- DOI:
10.1080/15384101.2015.1093432 - 发表时间:
2015 - 期刊:
- 影响因子:4.3
- 作者:
Alejandra Tomas;C. Futter - 通讯作者:
C. Futter
Expression of mini-G proteins specifically halt cognate GPCR trafficking and intracellular signalling
mini-G 蛋白的表达特异性地阻止同源 GPCR 运输和细胞内信号传导
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yusman Manchanda;Zenouska Ramchunder;Maria M. Shchepinova;G. Rutter;A. Inoue;Edward W. Tate;B. Jones;Alejandra Tomas - 通讯作者:
Alejandra Tomas
Receptor Activity-Modifying Protein 2 (RAMP2) alters glucagon receptor trafficking in hepatocytes with functional effects on receptor signalling
受体活性修饰蛋白 2 (RAMP2) 改变肝细胞中胰高血糖素受体的运输,并对受体信号传导产生功能性影响
- DOI:
10.1101/2021.05.09.443291 - 发表时间:
2021 - 期刊:
- 影响因子:8.1
- 作者:
E. McGlone;Yusman Manchanda;B. Jones;P. Pickford;A. Inoue;D. Carling;S. Bloom;T. Tan;Alejandra Tomas - 通讯作者:
Alejandra Tomas
Alejandra Tomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alejandra Tomas', 18)}}的其他基金
Targeting GLP-1 receptor trafficking to improve therapies for type 2 diabetes
靶向 GLP-1 受体转运以改善 2 型糖尿病的治疗
- 批准号:
MR/R010676/1 - 财政年份:2018
- 资助金额:
$ 75.13万 - 项目类别:
Research Grant
Role and regulation of GLP-1 receptor trafficking in pancreatic beta cells
GLP-1 受体运输在胰腺 β 细胞中的作用和调节
- 批准号:
MR/M012646/1 - 财政年份:2015
- 资助金额:
$ 75.13万 - 项目类别:
Research Grant
相似国自然基金
油菜花序有限分生变异的新分子机制及潜在应用研究
- 批准号:32360497
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
阿司匹林丁香酚酯促进高脂血症大鼠胆汁酸代谢的分子机制与潜在靶点挖掘
- 批准号:32373071
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
BRCA1/2突变诱导乳腺癌Treg细胞增殖活化的分子机制及潜在临床应用
- 批准号:82303165
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环形RNA在银屑病(psoriasis)干预治疗中的分子机制及潜在应用
- 批准号:32371349
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
吉兰-巴雷综合征潜在生物标志物APOC3通过介导代谢重编程调控巨噬细胞极化的分子机制研究
- 批准号:82371359
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Elucidating the Molecular Mechanisms Underlying Sex-Specific Regulation of Energy Metabolism through NUCB1 in Drosophila melanogaster
阐明黑腹果蝇中通过 NUCB1 进行能量代谢的性别特异性调节的分子机制
- 批准号:
490373 - 财政年份:2023
- 资助金额:
$ 75.13万 - 项目类别:
Operating Grants
Collaborative Research: Molecular Mechanisms Underlying Repeated Evolution: Integrating Micro- and Macroevolutionary Analyses and Functional Genomics
合作研究:重复进化的分子机制:整合微观和宏观进化分析和功能基因组学
- 批准号:
2316783 - 财政年份:2023
- 资助金额:
$ 75.13万 - 项目类别:
Standard Grant
Molecular Mechanisms Underlying Pluripotency in Fully Differentiated Plant Cells
完全分化植物细胞多能性的分子机制
- 批准号:
23K14217 - 财政年份:2023
- 资助金额:
$ 75.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mechanisms underlying diarrhea and gut inflammation mediated by Enterotoxigenic and Enteropathogenic E. coli
产肠毒素和致病性大肠杆菌介导的腹泻和肠道炎症的机制
- 批准号:
10674072 - 财政年份:2023
- 资助金额:
$ 75.13万 - 项目类别:
Molecular mechanisms underlying optimal glucocorticoid therapy for vocal fold disease
声带疾病最佳糖皮质激素治疗的分子机制
- 批准号:
10647027 - 财政年份:2023
- 资助金额:
$ 75.13万 - 项目类别: