Indoor power harvesting using hybrid perovskite materials

使用混合钙钛矿材料进行室内能量收集

基本信息

  • 批准号:
    MR/T022094/1
  • 负责人:
  • 金额:
    $ 154.51万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The world is increasingly using low-power, electronic devices in myriad ways, including as sensors for the Internet of Things (IoT), where billions of objects are connected to the internet to make a smart network, and in wearable electronic devices such as smart watches. Sensors are the fundamental components in the success of these ground-breaking technologies. By 2022, the total number of connected sensors and devices in IoT is expected to exceed 50 billion. How will all these devices be powered? Connecting every device to the electrical grid is too complex and expensive as it requires extensive installation and wiring, and furthermore increases electricity consumption. The use of batteries will limit the life span, bring service interruptions during battery replacement and will pose severe environmental issues at their disposal. My proposed research will bring a practical solution to this by developing inexpensive and environmentally friendly, new technologies to power these small electronic components. My research vision is to power these wireless sensors and internet connected smart devices, using cost-effective and self-sustaining indoor energy harvesters. For this I will suitably 'tune' the properties of a family of electronic materials called 'hybrid perovskites' which combine favourable attributes of both organic and inorganic materials. The two physical properties that I envisage to exploit for this 'multiple' energy harvesting are (a) photovoltaic - converting light to electricity and (b) piezoelectricity - converting mechanical vibrations to electricity. In hybrid perovskites these two properties co-exist, opening new opportunities for multiple energy harvesting. Inside buildings a vast reservoir of untapped energy is available in the form of lighting, mechanical vibrations and movement. Usually these are wasted energy inside the buildings. By combining the strengths of co-existing photovoltaic and piezoelectric activity in hybrid perovskites, I will develop different types of indoor energy harvesters, capable of harnessing energy from multiple sources of ambient energy. This multifunctional energy harvesting will lead to increased output electrical power and provide contingency in the scenario where one of the energy sources is not available or intermittent for e.g.; at night indoor lighting may be limited in supply but still vibrations inside the buildings can be pervasive (e.g.: air conditioning). Thus, by providing a continuous autonomous powering to sensors in IoT, my proposed project would enable these two technologies to achieve their potential to the fullest. This in turn will revolutionise our ways of life through more effective monitoring and communication, which will impact health care and the well-being of communities as well as the development of smart and energy efficient buildings and the digitization of manufacturing process. The proposed research will not only strengthen UK's existing photovoltaic global prominence by adding a new dimension of 'indoor' light harvesting but will also spearhead the UK's piezoelectric energy harvesting research. The proposed project is extremely timely as the power efficiency of microprocessor technology and local electrical energy storage systems (e.g.: supercapacitors) are continuously improving. Hence a similar advance in indoor energy harvesting will lead to a convergence of technologies which will ultimately lead to successful implementation of energy harvesting systems and products.
世界越来越多地以多种方式使用低功耗电子设备,包括用作物联网 (IoT) 的传感器,其中数十亿个物体连接到互联网以形成智能网络,以及智能手机等可穿戴电子设备。手表。传感器是这些突破性技术成功的基本组成部分。到 2022 年,物联网中连接的传感器和设备总数预计将超过 500 亿个。所有这些设备将如何供电?将每个设备连接到电网过于复杂和昂贵,因为它需要大量的安装和布线,而且还增加了电力消耗。电池的使用会限制其使用寿命,在更换电池时会造成服务中断,并会造成严重的环境问题。我提出的研究将通过开发廉价且环保的新技术来为这些小型电子元件供电,从而为此提供实用的解决方案。我的研究愿景是使用经济高效且自我维持的室内能量收集器为这些无线传感器和互联网连接的智能设备提供动力。为此,我将适当地“调整”一系列称为“混合钙钛矿”的电子材料的特性,该材料结合了有机和无机材料的有利属性。我设想利用这种“多重”能量收集的两个物理特性是(a)光伏 - 将光转换为电能和(b)压电 - 将机械振动转换为电能。在混合钙钛矿中,这两种特性共存,为多种能量收集提供了新的机会。 建筑物内部蕴藏着大量未开发的能量,以照明、机械振动和运动的形式存在。通常这些都是建筑物内浪费的能源。通过结合混合钙钛矿中共存的光伏和压电活性的优势,我将开发不同类型的室内能量收集器,能够利用多种环境能源的能量。这种多功能能量收集将导致输出电力增加,并在其中一种能源不可用或间歇性的情况下提供应急措施,例如:夜间,室内照明的供应可能有限,但建筑物内部的振动仍然普遍存在(例如:空调)。因此,通过为物联网中的传感器提供连续的自主供电,我提出的项目将使这两种技术能够充分发挥其潜力。这反过来将通过更有效的监控和通信彻底改变我们的生活方式,这将影响医疗保健和社区福祉,以及智能和节能建筑的发展以及制造过程的数字化。 拟议的研究不仅将通过增加“室内”光收集的新维度来加强英国现有的光伏全球地位,而且还将引领英国的压电能量收集研究。随着微处理器技术和本地电能存储系统(例如:超级电容器)的电源效率不断提高,拟议的项目非常及时。因此,室内能量收集领域的类似进步将导致技术的融合,最终导致能量收集系统和产品的成功实施。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wide-Bandgap Halide Perovskites for Indoor Photovoltaics.
用于室内光伏的宽带隙卤化物钙钛矿。
  • DOI:
    http://dx.10.3389/fchem.2021.632021
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jagadamma LK
  • 通讯作者:
    Jagadamma LK
A BODIPY small molecule as hole transporting material for efficient perovskite solar cells
BODIPY 小分子作为高效钙钛矿太阳能电池的空穴传输材料
  • DOI:
    10.1039/d2se00667g
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Marques dos Santos;L. K. Jagadamma;Michele Cariello;I. Samuel;G. Cooke
  • 通讯作者:
    G. Cooke
Chlorine retention enables the indoor light harvesting of triple halide wide bandgap perovskites
氯保留使三卤化物宽带隙钙钛矿的室内光收集成为可能
Hysteresis in hybrid perovskite indoor photovoltaics.
混合钙钛矿室内光伏发电中的滞后现象。
Distinguishing Electron Diffusion and Extraction in Methylammonium Lead Iodide.
区分甲铵碘化铅中的电子扩散和萃取。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lethy Krishnan Jagadamma其他文献

Triptycene as a Supramolecular Additive in PTB7:PCBM Blends and Its Influence on Photovoltaic Properties.
三蝶烯作为 PTB7:PCBM 共混物中的超分子添加剂及其对光伏性能的影响。
  • DOI:
    10.1021/acsami.8b03114
  • 发表时间:
    2018-06-22
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Lethy Krishnan Jagadamma;Liam J. McCarron;A. Wiles;Victoria Savikhin;M. Sajjad;Mahdieh Yazdani;V. Rotello;M. Toney;G. Cooke;I. Samuel
  • 通讯作者:
    I. Samuel
Piezoelectric Charge Coefficient of Halide Perovskites
卤化物钙钛矿的压电电荷系数
  • DOI:
    10.3390/ma17133083
  • 发表时间:
    2024-06-23
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Raja Sekhar Muddam;Joseph Sinclair;Lethy Krishnan Jagadamma
  • 通讯作者:
    Lethy Krishnan Jagadamma
Chlorine retention enables the indoor light harvesting of triple halide wide bandgap perovskites
  • DOI:
    10.1039/d3ta01784b
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Shaoyang Wang;Paul R. Edwards;Maged Abdelsamie;Peter Brown;David Webster;Arvydas Ruseckas;Gopika Rajan;Ana I. S. Neves;Robert W. Martin;Carolin M. Sutter-Fella;Graham A. Turnbull;Ifor D. W. Samuel;Lethy Krishnan Jagadamma
  • 通讯作者:
    Lethy Krishnan Jagadamma
Efficient inverted bulk-heterojunction solar cells from low-temperature processing of amorphous ZnO buffer layers
  • DOI:
    10.1039/c4ta02276a
  • 发表时间:
    2014-06
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Lethy Krishnan Jagadamma;Maged Abdelsamie;Abdulrahman El Labban;Emanuele Aresu;Guy O. Ngongang Ndjawa;Dalaver H. Anjum;Dongkyu Cha;Pierre M. Beaujuge;Aram Amassian
  • 通讯作者:
    Aram Amassian
BODIPY derivatives with near infra-red absorption as small molecule donors for bulk heterojunction solar cells
  • DOI:
    10.1039/c9ra01750j
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    John Marques dos Santos;Lethy Krishnan Jagadamma;Najwa Mousa Latif;Arvydas Ruseckas;Ifor D. W. Samuel;Graeme Cooke
  • 通讯作者:
    Graeme Cooke

Lethy Krishnan Jagadamma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lethy Krishnan Jagadamma', 18)}}的其他基金

Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
  • 批准号:
    MR/Y011686/1
  • 财政年份:
    2025
  • 资助金额:
    $ 154.51万
  • 项目类别:
    Fellowship

相似国自然基金

基于切平面受限Power图的快速重新网格化方法
  • 批准号:
    62372152
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大规模海上风电经柔直联网系统频率支撑能力量化评估与提升策略研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于有效光合辐射模拟的高密度住区绿地年碳增汇潜力量化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
社会应急力量联合救灾网络的构建、运行与评估研究
  • 批准号:
    72274131
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
用于癌症早期诊断的超分辨力量子等离激元单分子无标记检测技术
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Green Optical Wireless Communications Facilitated by Photonic Power Harvesting "GreenCom"
光子能量收集“GreenCom”促进绿色光无线通信
  • 批准号:
    EP/X027511/2
  • 财政年份:
    2024
  • 资助金额:
    $ 154.51万
  • 项目类别:
    Research Grant
Wind Energy Harvesting for Ship Propulsion Assistance and Power (WHISPER)
用于船舶推进辅助和电力的风能采集 (WHISPER)
  • 批准号:
    10065742
  • 财政年份:
    2023
  • 资助金额:
    $ 154.51万
  • 项目类别:
    EU-Funded
Circuit design and simulation for autonomous adaption of energy harvesting power management ICs
能量收集电源管理 IC 自主适应的电路设计和仿真
  • 批准号:
    10075508
  • 财政年份:
    2023
  • 资助金额:
    $ 154.51万
  • 项目类别:
    Collaborative R&D
Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
  • 批准号:
    10735395
  • 财政年份:
    2023
  • 资助金额:
    $ 154.51万
  • 项目类别:
Development of High-performance Rectenna Diode for Mid-infrared / THz Optical Power Conversion
用于中红外/太赫兹光功率转换的高性能整流二极管的开发
  • 批准号:
    22KJ0239
  • 财政年份:
    2023
  • 资助金额:
    $ 154.51万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了