Harnessing the power of diverse populations to empower clinical translation of genome-wide association studies of common human disease

利用不同人群的力量,促进人类常见疾病全基因组关联研究的临床转化

基本信息

  • 批准号:
    MR/W029626/1
  • 负责人:
  • 金额:
    $ 53.16万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Genome-wide association studies (GWAS) have been successful in identifying changes in our DNA, referred to as genetic variants, that contribute to our risk of developing many common human diseases, including those that have major public health burden, such as cancers, cardiovascular disease, and diabetes. This success offers exciting opportunities to use genetics for a significant positive impact on human health by: (i) improving our understanding of the biology of disease, thereby informing potential novel treatments; and (ii) predicting the future occurrence of disease in an individual, referred to as polygenic risk scores (PRS). However, despite this success, most GWAS have been performed in white populations of European ancestry, in Europe and North America. This bias in GWAS is in stark contrast to the global and racial/ethnic distribution of many diseases and may therefore exacerbate healthcare disparities because genetic findings from white European ancestry individuals are unlikely to be as impactful in other population groups. For example, the genetic variants that cause disease in white European ancestry individuals might not be observed in other population groups. Consequently, PRS derived from white European ancestry GWAS provide less reliable prediction of disease risk into individuals of African, Asian, or mixed ancestry. The concerns over population bias in genetic studies have prompted a recent expansion of GWAS into individuals from more diverse ancestry groups. The overall vision of this proposal is to develop novel statistical methods for the analysis of multi-ancestry GWAS that allow for the genetic differences observed across diverse population groups. These methods will be implemented into user-friendly software tools that will be shared with the wider research community to provide a better understanding of the impact on disease of genetic differences between population groups to reduce healthcare disparities. Improved knowledge of disease biology that is shared across diverse populations will inform treatment development opportunities that will be relevant to everyone. Furthermore, PRS that take account of the ancestry of an individual will provide more accurate prediction of disease risk, irrespective of their genetic background.
全基因组关联研究(GWAS)已成功地识别我们的DNA的变化,称为遗传变异,这有助于我们患上许多常见的人类疾病,包括那些具有重大公共健康负担的人,例如癌症,心血管疾病和糖尿病。这一成功提供了使用遗传学对人类健康产生重大积极影响的激动人心的机会: (ii)预测个人中疾病的未来发生,称为多基因风险评分(PRS)。然而,尽管取得了成功,但大多数GWA都在欧洲和北美的欧洲血统白人人群中进行。 GWAS中的这种偏见与许多疾病的全球和种族/种族分布形成鲜明对比,因此可能加剧医疗保健差异,因为来自白人欧洲血统个体的遗传发现不太可能在其他人群中产生影响。例如,在其他人群群体中可能不会观察到引起欧洲白人血统疾病的遗传变异。因此,源自欧洲白人血统的PRS对非洲,亚洲或混合血统的个体提供了对疾病风险的可靠性较低的预测。遗传研究中人口偏见的担忧促使GWA最近扩展到来自更多样化的祖先的个体。该提案的总体视野是开发新的统计方法,用于分析多功能GWAS,从而允许在不同人群群体中观察到的遗传差异。这些方法将被实施到用户友好的软件工具中,这些软件工具将与更广泛的研究社区共享,以更好地了解对人群群体之间遗传差异疾病的影响,以减少医疗保健差异。在各种各样的人群中共享的疾病生物学知识的提高将为治疗发展机会提供与每个人有关的机会。此外,考虑到个体的血统的PR将提供更准确的疾病风险预测,无论其遗传背景如何。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Leveraging information between multiple population groups and traits improves fine-mapping resolution.
  • DOI:
    10.1038/s41467-023-43159-5
  • 发表时间:
    2023-11-10
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Zhou, Feng;Soremekun, Opeyemi;Chikowore, Tinashe;Fatumo, Segun;Barroso, Ines;Morris, Andrew P;Asimit, Jennifer L
  • 通讯作者:
    Asimit, Jennifer L
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Morris其他文献

Mapping of Internet “Coastlines” via Large Scale Anonymized Network Source Correlations
通过大规模匿名网络源关联绘制互联网“海岸线”
  • DOI:
    10.1109/hpec58863.2023.10363488
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hayden Jananthan;J. Kepner;Michael Jones;W. Arcand;David Bestor;William Bergeron;C. Byun;Tim Davis;V. Gadepally;Daniel Grant;Michael Houle;M. Hubbell;Anna Klein;Lauren Milechin;Guillermo Morales;Andrew Morris;J. Mullen;Ritesh Patel;A. Pentland;Sandeep Pisharody;Andrew Prout;A. Reuther;Antonio Rosa;S. Samsi;Tyler H. Trigg;Gabriel Wachman;Charles Yee;P. Michaleas
  • 通讯作者:
    P. Michaleas
Exploration of naphthoquinone analogs in targeting the TCF-DNA interaction to inhibit the Wnt/β-catenin signaling pathway.
探索萘醌类似物靶向 TCF-DNA 相互作用以抑制 Wnt/β-catenin 信号通路。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Morris;Rosalie G. Hoyle;P. Pagare;Shadid Uz Zaman;Zhikun Ma;Jiong Li;Yan Zhang
  • 通讯作者:
    Yan Zhang
Creating sustainable innovation through design for behaviour change: full project report
通过行为改变设计创造可持续创新:完整的项目报告
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Niedderer;J. MacKrill;S. Clune;Dan Lockton;Geke D. S. Ludden;Andrew Morris;R. Cain;E. Gardiner;Robin Gutteridge;M. Evans;P. Hekkert
  • 通讯作者:
    P. Hekkert
Objective patient-related outcomes of rapid-response systems — a pilot study to demonstrate feasibility in two hospitals
  • DOI:
    10.1016/s1441-2772(23)02185-3
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Morris;Helen M. Owen;Karen Jones;Jillian Hartin;John Welch;Christian P. Subbe
  • 通讯作者:
    Christian P. Subbe
Evaluation of alternative intersection treatments at rural crossroads using simulation software
  • DOI:
    10.1080/15389588.2018.1528357
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sujanie Peiris;Bruce Corben;Michael Nieuwesteeg;Hampton C. Gabler;Andrew Morris;Diana Bowman;Michael G. Lenné;Michael Fitzharris
  • 通讯作者:
    Michael Fitzharris

Andrew Morris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Morris', 18)}}的其他基金

Novel statistical methods for transcriptomic imputation to enhance understanding of causal mechanisms underlying human diseases
转录组插补的新统计方法可增强对人类疾病因果机制的理解
  • 批准号:
    MR/V020749/1
  • 财政年份:
    2022
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Research Grant
UKRI trusted and connected Data and Analytics Research Environments, Phase 1
UKRI 可信且互联的数据和分析研究环境,第一阶段
  • 批准号:
    MC_PC_21005
  • 财政年份:
    2021
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Intramural
Population Research UK Phase 1: Partnership Design & Dialogue
英国人口研究第一阶段:合作伙伴设计
  • 批准号:
    MC_PC_20024
  • 财政年份:
    2021
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Intramural
Phase 1 COVID-19 Data and Connectivity – National Core Study (Phase 1 D&C-NCS)
第 1 阶段 COVID-19 数据和连接 — 国家核心研究(第 1 阶段 D
  • 批准号:
    MC_PC_20058
  • 财政年份:
    2021
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Intramural
COVID-19: Data and Connectivity – National Core Study (D&C-NCS)
COVID-19:数据和连接 – 国家核心研究 (D
  • 批准号:
    MC_PC_20029
  • 财政年份:
    2020
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Intramural
Baskerville: a national accelerated compute resource
巴斯克维尔:国家加速计算资源
  • 批准号:
    EP/T022221/1
  • 财政年份:
    2020
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Research Grant
Open KE Fellowship: Translation of a Miniature CT-DO Sensor from the Laboratory to Real World Applications
开放 KE 奖学金:微型 CT-DO 传感器从实验室到现实世界应用的转化
  • 批准号:
    NE/S006451/2
  • 财政年份:
    2019
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Research Grant
UKRI ISCF DIH Programme Phase 3– Innovation Gateway, Health Data Research Hubs, and UK Health Data Research Alliance
UKRI ISCF DIH 计划第 3 阶段——创新网关、健康数据研究中心和英国健康数据研究联盟
  • 批准号:
    MC_PC_19002
  • 财政年份:
    2019
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Intramural
Open KE Fellowship: Translation of a Miniature CT-DO Sensor from the Laboratory to Real World Applications
开放 KE 奖学金:微型 CT-DO 传感器从实验室到现实世界应用的转化
  • 批准号:
    NE/S006451/1
  • 财政年份:
    2018
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Research Grant
Health Data Research UK - CORE Funds
英国健康数据研究 - CORE 基金
  • 批准号:
    HDR-CORE
  • 财政年份:
    2018
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Intramural

相似国自然基金

主体异质性视角下国家战略科技力量推进关键核心技术创新的效应、路径与对策研究
  • 批准号:
    72304276
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
社交媒体下基于力量不均衡的网络欺凌感知技术研究
  • 批准号:
    62302223
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于切平面受限Power图的快速重新网格化方法
  • 批准号:
    62372152
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多维度参数耦合废锂离子电池循环利用过程降碳潜力量化评价方法
  • 批准号:
    52300232
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
极端天气下电热能量网络容灾能力量化评估与韧性提升策略
  • 批准号:
    62303182
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
  • 批准号:
    10733155
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
Facility Management, Maintenance and Operation Core
设施管理、维护和运营核心
  • 批准号:
    10793828
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
Optimizing Power Skills in Interdisciplinary, Diverse & Innovative Academic Networks (OPSIDIAN)
优化跨学科、多元化的权力技能
  • 批准号:
    543087-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Collaborative Research and Training Experience
Core B: Integrative Data-Science Core
核心 B:综合数据科学核心
  • 批准号:
    10670335
  • 财政年份:
    2021
  • 资助金额:
    $ 53.16万
  • 项目类别:
Core B: Integrative Data-Science Core
核心 B:综合数据科学核心
  • 批准号:
    10271125
  • 财政年份:
    2021
  • 资助金额:
    $ 53.16万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了