Biocatalytic Manufacturing of Nucleic Acid Therapeutics
核酸治疗药物的生物催化制造
基本信息
- 批准号:MR/W029324/1
- 负责人:
- 金额:$ 817.8万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Proteins control almost all biochemical processes in the human body. These biological macromolecules are encoded in our DNA, which is first transcribed to mRNA and subsequently translated to proteins. Traditional small molecule pharmaceuticals are designed to selectively bind to a target protein in order to modulate its function. While this approach has proven very powerful, there are numerous diseases which are difficult or not possible to treat in this manner. In recent years, a new class of drug molecules called nucleic acid therapeutics (NATs) have emerged which offer a potentially versatile approach for the treatment of a wide range of genetic disorders and diseases. These molecules are short modified DNA sequences which are designed to bind to mRNA and directly modulate the production of disease related proteins. Existing methods of producing NATs rely on chemical synthesis, which requires large excesses of expensive reagents, huge volumes of organic solvent (1 ton of acetonitrile per Kg of product) and deliver the final products with low yield and modest (~90%) purity. Reactions are performed on solid supports or columns, which limits the process scalability meaning that these methods are only suitable for producing oligonucleotides in <10 Kg batches. These limitations have not been a major problem for the manufacture of NATs currently on the market, as these have been limited to the treatment of rare diseases and are therefore produced in low volumes. However, a large volume cholesterol lowering drug called Inclisarin was recently approved and there are several hundred NATs under evaluation in clinical trials for the treatment of common diseases. As current chemical methods are not suitable for the large (tonne) scale synthesis of NATs, it is now essential that we develop new, sustainable, scalable and versatile manufacturing strategies for their production. In this application, we will develop a green, cost-efficient and truly versatile biocatalytic platform for manufacturing NATs and their nucleotide triphosphate (NTP) building blocks. Biocatalysis is an exciting technology which is widely used across the chemical industry, whereby enzymes (nature's own catalysts) are used to convert starting materials into high-value products. Compared to natural DNA, NATs contain chemical modifications which are designed to improve their efficacy, selectivity and metabolic stability. These chemical modifications are not well tolerated by natural enzymes, however using a technology called directed evolution we are able to quickly engineer enzymes to modify their functions and optimise their properties making them suitable for practical applications. We will use combinations of different engineered enzymes to firstly access NTP building blocks, which will be used in subsequent biocatalytic reactions to produce NATs. We will then compare NATs produced using our approaches to those produced with standard chemical approaches, using state of the art analytical techniques combined with biological validation assays. The technologies developed will allow efficient, sustainable and cost-effective manufacturing of NATs in high purity, thus allowing this important new drug modality to realise its full potential for the treatment of a wide-range of diseases.
蛋白质控制人体几乎所有的生化过程。这些生物大分子在我们的DNA中编码,该DNA首先转录为mRNA,然后转化为蛋白质。传统的小分子药物旨在选择性地结合靶蛋白,以调节其功能。尽管这种方法已被证明非常强大,但有许多疾病很难或不可能以这种方式治疗。近年来,出现了一种新的称为核酸疗法(NAT)的药物分子,为治疗多种遗传疾病和疾病提供了潜在的用途方法。这些分子是简短的修饰DNA序列,旨在与mRNA结合并直接调节疾病相关蛋白的产生。现有的生产NAT的方法依赖化学合成,该化学合成需要大量昂贵的试剂,大量的有机溶剂(每千克产品1吨乙腈),并以低产量和较低的(约90%)纯度提供最终产品。反应是在固体支撑或列上进行的,这限制了过程可伸缩性,这意味着这些方法仅适用于在<10 kg批处理中产生寡核苷酸。这些局限性并不是目前市场上NAT的生产的主要问题,因为这些局限性仅限于治疗罕见疾病,因此在低体积中产生。然而,最近批准了一种称为内利蛋白的大量胆固醇降低药物,在临床试验中,有数百名NAT正在评估常见疾病。由于当前的化学方法不适合NAT的大型(吨)量表合成,因此我们必须为其生产开发新的,可持续,可扩展和多才多艺的制造策略。在此应用中,我们将开发一个绿色,成本效益且真正的多功能生物催化平台,用于制造NAT及其三磷酸核苷酸(NTP)的构件。生物催化是一种令人兴奋的技术,在化学工业中广泛使用,从而将酶(自然的催化剂)用于将起始材料转化为高价值产品。与天然DNA相比,NAT包含旨在提高其功效,选择性和代谢稳定性的化学修饰。天然酶不能很好地耐受这些化学修饰,但是,使用一种称为定向进化的技术,我们能够快速地设计酶来修改其功能并优化其特性,从而使其适合实际应用。我们将使用不同工程酶的组合首先访问NTP构建块,该块将用于随后的生物催化反应以产生NAT。然后,我们将使用我们的方法与使用标准化学方法生产的方法进行比较,使用标准化学方法,使用最先进的分析技术与生物学验证测定法相结合。开发的技术将使NAT高纯度的NAT制造有效,可持续和具有成本效益,从而使这种重要的新药物形态能够实现其对广泛疾病的治疗的全部潜力。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering T7 RNA polymerases for improved manufacturing of mRNA therapeutics
工程化 T7 RNA 聚合酶以改进 mRNA 疗法的生产
- DOI:10.1016/j.checat.2023.100559
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Obexer R
- 通讯作者:Obexer R
Biocatalytic Synthesis of Antiviral Nucleosides, Cyclic Dinucleotides, and Oligonucleotide Therapies.
- DOI:10.1021/jacsau.2c00481
- 发表时间:2023-01-23
- 期刊:
- 影响因子:8
- 作者:Van Giesen, Kyle J D;Thompson, Matthew J;Meng, Qinglong;Lovelock, Sarah L
- 通讯作者:Lovelock, Sarah L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Turner其他文献
Patients' and staff's views of falls occurring on rehabilitation wards : an action research study to explore the voices of experience
- DOI:
- 发表时间:
2012-03 - 期刊:
- 影响因子:0
- 作者:
Nicholas Turner - 通讯作者:
Nicholas Turner
A multi-centre, three-arm, individually randomised, non-inferiority, open trial to compare immediate orally administered, immediate topically administered or delayed orally administered antibiotics for acute otitis media with discharge in children: The Runny Ear Study (REST): study protocol. Trials,
一项多中心、三组、单独随机、非劣效性、开放性试验,比较立即口服、立即局部给药或延迟口服抗生素治疗有分泌物的儿童急性中耳炎:流涕研究(REST):研究
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
K. Curtis;M. Moore;C. Cabral;V. Curcin;J. Horwood;R. Morris;Vibhore Prasad;A. Schilder;Nicholas Turner;S. Wilkes;A. Hay;Jodi Taylor - 通讯作者:
Jodi Taylor
P124. Avoiding surgery in breast cancer patients with exceptional Response to neo-adjuvant chemotherapy - ASTARTE Trial
- DOI:
10.1016/j.ejso.2019.01.144 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:
- 作者:
Marios Konstantinos Tasoulis;Gillian Ross;Nicholas Turner;Navita Somaiah;Romney Pope;Steve Allen;Peter Barry;Jennifer Rusby;Ashutosh Nerurkar;Peter Osin;Fiona MacNeill - 通讯作者:
Fiona MacNeill
Pilot randomised controlled trial of school‐based humanistic counselling for psychological distress in young people: Outcomes and methodological reflections
青少年心理困扰校本人文咨询随机对照试验:结果与方法学反思
- DOI:
10.1080/14733145.2014.905614 - 发表时间:
2014 - 期刊:
- 影响因子:2.4
- 作者:
J. Pybis;M. Cooper;A. Hill;Karen Cromarty;Ruth Levesley;J. Murdoch;Nicholas Turner - 通讯作者:
Nicholas Turner
Mental health support and training to improve secondary school teachers’ well-being: the WISE cluster RCT
心理健康支持和培训以改善中学教师的福祉:WISE 集群随机对照试验
- DOI:
10.3310/phr09120 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J. Kidger;Rhiannon Evans;S. Bell;H. Fisher;Nicholas Turner;W. Hollingworth;S. Harding;Jillian Powell;R. Brockman;L. Copeland;R. Araya;R. Campbell;T. Ford;D. Gunnell;Richard Morris;S. Murphy - 通讯作者:
S. Murphy
Nicholas Turner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Turner', 18)}}的其他基金
New Synthetic Chaperones to Enhance Protein Activity
增强蛋白质活性的新型合成伴侣
- 批准号:
EP/V056085/2 - 财政年份:2023
- 资助金额:
$ 817.8万 - 项目类别:
Fellowship
Directed Molecular Recognition through Next-Generation Hybrid Molecular Imprinting
通过下一代混合分子印迹进行定向分子识别
- 批准号:
EP/V046594/2 - 财政年份:2023
- 资助金额:
$ 817.8万 - 项目类别:
Research Grant
New Synthetic Chaperones to Enhance Protein Activity
增强蛋白质活性的新型合成伴侣
- 批准号:
EP/V056085/1 - 财政年份:2022
- 资助金额:
$ 817.8万 - 项目类别:
Fellowship
Production of Niraparib using Imine Reductases
使用亚胺还原酶生产尼拉帕尼
- 批准号:
BB/V003410/1 - 财政年份:2021
- 资助金额:
$ 817.8万 - 项目类别:
Research Grant
Directed Molecular Recognition through Next-Generation Hybrid Molecular Imprinting
通过下一代混合分子印迹进行定向分子识别
- 批准号:
EP/V046594/1 - 财政年份:2021
- 资助金额:
$ 817.8万 - 项目类别:
Research Grant
Exploration of Linking Chemistry in the Design of Aptamer-Molecularly Imprinted Polymer Hybrids (aptaMIPs)
适配体分子印迹聚合物杂化物 (aptaMIPs) 设计中连接化学的探索
- 批准号:
EP/S003339/1 - 财政年份:2019
- 资助金额:
$ 817.8万 - 项目类别:
Research Grant
Centre for Biocatalytic Manufacture of New Modalities (CBNM)
新模式生物催化制造中心(CBNM)
- 批准号:
EP/S005226/1 - 财政年份:2018
- 资助金额:
$ 817.8万 - 项目类别:
Research Grant
Novel Biocatalysts for Improved Routes to an Active Pharmaceutical Ingredient
用于改进活性药物成分路线的新型生物催化剂
- 批准号:
BB/N010736/1 - 财政年份:2016
- 资助金额:
$ 817.8万 - 项目类别:
Research Grant
Imine Reductases: Biochemistry, Engineering and Application
亚胺还原酶:生物化学、工程与应用
- 批准号:
BB/M006611/1 - 财政年份:2015
- 资助金额:
$ 817.8万 - 项目类别:
Research Grant
Biocatalysis & Biotransformation: A 5th Theme for the National Catalysis Hub
生物催化
- 批准号:
EP/M013219/1 - 财政年份:2015
- 资助金额:
$ 817.8万 - 项目类别:
Research Grant
相似国自然基金
新发展格局背景下参与全球价值链对中国制造业空间集聚的影响机制、效应评估及政策研究
- 批准号:42301202
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
数字制造业集聚对供应链中断的缓冲机制研究
- 批准号:72303034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
政府补贴对制造业绿色创新韧性的影响机理、效果评估与政策优化研究
- 批准号:72304141
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
先进制造业服务化组织障碍成因及调节机制研究
- 批准号:72302069
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
创新链管理视角下高端装备制造业开放创新的风险识别、评估与治理对策研究
- 批准号:72304262
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Leveraging cytoplasmic transcription to develop self-amplifying DNA vaccines
利用细胞质转录开发自我扩增 DNA 疫苗
- 批准号:
10579667 - 财政年份:2023
- 资助金额:
$ 817.8万 - 项目类别:
An Aptamer-directed IgG1-Fc Drug Conjugate (AFDC) for Treating Pancreatic Cancer
用于治疗胰腺癌的适体导向 IgG1-Fc 药物偶联物 (AFDC)
- 批准号:
10761053 - 财政年份:2023
- 资助金额:
$ 817.8万 - 项目类别:
High efficiency microfluidic device for large scale engineered cell therapy manufacturing
用于大规模工程细胞治疗制造的高效微流体装置
- 批准号:
10693775 - 财政年份:2023
- 资助金额:
$ 817.8万 - 项目类别:
Sugar-coating our way to genetically modified mesenchymal stem cells: Glycocalyx-inspired cell culture substrates that prime mesenchymal stem cells for polycation-mediated pDNA delivery.
糖衣我们的转基因间充质干细胞之路:糖萼启发的细胞培养基质为间充质干细胞提供聚阳离子介导的 pDNA 传递。
- 批准号:
10647120 - 财政年份:2023
- 资助金额:
$ 817.8万 - 项目类别:
Enabling standardized point-of-care tuberculosis diagnostics via rapid osmotic concentration
通过快速渗透浓度实现标准化床旁结核病诊断
- 批准号:
10697134 - 财政年份:2023
- 资助金额:
$ 817.8万 - 项目类别: