Computational tropical geometry and its applications

计算热带几何及其应用

基本信息

  • 批准号:
    MR/S034463/1
  • 负责人:
  • 金额:
    $ 88.41万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Tropical geometry is a young area of mathematics which studies combinatorial objects arising from polynomial equations. These so-called tropical varieties arise naturally in many areas of mathematics and beyond, such as phylogenetics in biology, celestial mechanics in physics, and auction theory in economics. Wherever they arise, tropical varieties often allow new computational approaches to existing problems. In the UK, the Bank of England has been using tropical geometry since the financial crises to allocate money to the UK financial system. In France, tropical geometry is used for optimisation of load balancing of mobile networks, and performance analysis of emergency call centres.This research projects aims at establishing tropical geometry as a powerful and versatile tool for computational questions in applied sciences and industry beyond optimisation. To this end, we pursue concrete applications as well as improvements of computational methods. The final deliverable is a comprehensive open source software system for tropical algebraic geometry with strong emphasis on its wide spectrum of applications. We focus on three main problems, which were chosen to maximise the impact and the range of techniques that they encompass.The first problem revolves around systems of polynomial equations, which are ubiquitous in applied science. They describe the steady states of chemical reaction networks, the range of movement of a robot arm, or the binding behaviour of ligands in a biochemical system. For over two decades, the state of the art for solving such systems has been homotopy continuation, which works by carefully deforming an easy start system to the target system while tracing all solutions along the way.We seek to improve the existing capabilities, in particular for the type of polynomial systems which arise in the aforementioned applications. While ideas to apply tropical geometry to homotopy continuation have already been studied, all past approaches have failed due to questions of efficiency. However, the last couple of years have seen significant algorithmic breakthroughs in tropical geometry, which we will exploit and build upon.The second problem involves p-adic numbers, which are an indispensable class of fields for number theory. This not only makes them important for the applications of tropical geometry in number theory, but also entails a vast array of number theoretic tools available exclusively over them. Hence a good grasp on tropical geometry over p-adics numbers is an imperative for both theory and practice.That being said, computationally, tropical geometry over p-adic numbers has been neglected due to the unique algorithmic challenges they pose. We seek to remedy this situation and explore computational aspects of tropical geometry specifically over p-adic numbers, facilitated by recent trends in computer algebra.The third problem involves Gröbner bases, which have long history in computational algebraic geometry and adjacent fields such as cryptography. Furthermore, the past decade featured an explosion of algebro-geometric techniques in areas outside of mathematics. As such, Gröbner bases have gained traction both as tool for studying polynomial systems and as object of interest themselves, e.g., as Markov bases in algebraic statistics. However, Gröbner bases are notoriously hard to compute, which severely inhibits their use in practical applications.We will investigate so-called saturating Gröbner bases. In general, polynomial unknowns represent arbitrary elements of the coefficient field, and all operations within a Gröbner basis computation respect this ambiguity. In practice, one is often only interested in specific solutions, e.g. strictly positive real solutions. Saturating Gröbner basis algorithm are symbolic algorithms which are capable of exploiting this numerical information that is abundant in many applications and use it to speed up its performance.
热带几何是数学的一个年轻领域,它研究由多项式方程产生的组合对象,这些所谓的热带变体自然出现在数学及其他领域的许多领域,例如生物学中的系统发育学、物理学中的天体力学和物理学中的拍卖理论。无论热带品种出现在哪里,它们通常都会为现有问题提供新的计算方法。自金融危机以来,英国央行一直在使用热带几何来向英国金融体系分配资金。用于优化移动网络的负载平衡以及紧急呼叫中心的性能分析。该研究项目旨在将热带几何学建立为一种强大且多功能的工具,用于解决应用科学和工业中超越优化的计算问题。以及计算方法的改进,最终的成果是一个全面的热带代数几何开源软件系统,重点关注其广泛的应用,我们选择这些问题是为了最大限度地提高其影响和范围。它们包含的技术。第一个问题围绕着应用科学中普遍存在的多项式方程组,它们描述了化学反应网络的稳态、机器人手臂的运动范围或生化系统中配体的结合行为。解决此类系统的最先进技术是同伦延拓,它的工作原理是仔细地将一个简单的启动系统变形为目标系统,同时跟踪沿途的所有解决方案。我们寻求提高现有的能力,特别是多项式类型虽然已经研究了将热带几何应用于同伦延拓的想法,但由于效率问题,过去的所有方法都失败了。然而,在过去的几年里,热带几何在算法上取得了重大突破。第二个问题涉及 p 进数,它是数论中不可或缺的一类域,这不仅使它们对于热带几何在数论中的应用很重要,而且还涉及大量的问题。可用的数论工具因此,对 p 进数数的热带几何的良好掌握对于理论和实践都是必要的。话虽如此,在计算上,由于 p 进数数带来的独特算法挑战,热带几何已被忽视。纠正这种情况,并在计算机代数的最新趋势的推动下,探索热带几何的计算方面,特别是在 p-adic 数上。第三个问题涉及 Gröbner 基,它在计算代数几何和密码学等邻近领域有着悠久的历史。此外,过去十年,代数几何技术在数学以外的领域出现了爆炸式增长,因此,格罗布纳基作为研究多项式系统的工具和本身的兴趣对象(例如代数统计中的马尔可夫基)而受到关注。然而,Gröbner 基是出了名的难以计算,这严重限制了它们在实际应用中的使用。我们将研究所谓的饱和 Gröbner 基。未知数表示系数域的任意元素,并且 Gröbner 基计算中的所有运算都考虑到这种模糊性。在实践中,人们通常只对特定的解感兴趣,例如,饱和严格正实数解是能够实现的符号算法。利用许多应用程序中丰富的数字信息并使用它来加速其性能。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cooperativity, absolute interaction, and algebraic optimization.
合作性、绝对相互作用和代数优化。
  • DOI:
    http://dx.10.1007/s00285-020-01540-8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Kaihnsa N
  • 通讯作者:
    Kaihnsa N
Sharp Bounds for the Number of Regions of Maxout Networks and Vertices of Minkowski Sums
Maxout 网络区域数和 Minkowski 和顶点数的锐界
On intersections and stable intersections of tropical hypersurfaces
热带超曲面的交集和稳定交集
  • DOI:
    http://dx.10.5802/alco.327
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ren Y
  • 通讯作者:
    Ren Y
Computing zero-dimensional tropical varieties via projections
通过投影计算零维热带品种
  • DOI:
    http://dx.10.1007/s00037-022-00222-9
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Görlach P
  • 通讯作者:
    Görlach P
Computing GIT-fans with symmetry and the Mori chamber decomposition of \overline{}_{0,6}
计算具有对称性的 GIT-fans 和 overline{}_{0,6} 的 Mori 室分解
  • DOI:
    http://dx.10.1090/mcom/3546
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Böhm J
  • 通讯作者:
    Böhm J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yue Ren其他文献

Spatio-Temporal-Attention-Based Vehicle Trajectory Prediction Considering Multi-Vehicle Interaction in Mixed Traffic Flow
混合交通流中考虑多车交互的基于时空注意力的车辆轨迹预测
  • DOI:
    10.3390/app14010161
  • 发表时间:
    2023-12-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Zeng;Yue Ren;Kan Wang;Xiong Hu;Jiufa Li
  • 通讯作者:
    Jiufa Li
Functions of T-cell subsets and their related cytokines in the pathological processes of autoimmune encephalomyelitic mice.
T细胞亚群及其相关细胞因子在自身免疫性脑脊髓炎小鼠病理过程中的功能。
Halogen Bonding: A New Platform for Achieving Multi-Stimuli-Responsive Persistent Phosphorescence.
卤素键合:实现多刺激响应持久磷光的新平台。
  • DOI:
    10.1002/anie.202200236
  • 发表时间:
    2022-01-31
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenbo Dai;Xiaowei Niu;Xinghui Wu;Yue Ren;Yongfeng Zhang;Gengchen Li;Han Su;Y. Lei;Jiawen Xiao;Jianbing Shi;B. Tong;Zhengxu Cai;Yuping Dong
  • 通讯作者:
    Yuping Dong
Quercetin protects neuronal cells from oxidative stress and cognitive degradation induced by amyloid β-peptide treatment.
槲皮素保护神经元细胞免受淀粉样β肽治疗引起的氧化应激和认知退化。
  • DOI:
    10.3892/mmr.2017.6704
  • 发表时间:
    2017-08-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Yan;Hua Guo;Yong Zhao;Aihua Li;Yue Ren;Jiewen Zhang
  • 通讯作者:
    Jiewen Zhang
Mechanical ventilation and extracorporeal membrane oxygenation as a bridge to lung transplantation: Closing the gap.
机械通气和体外膜氧合作为肺移植的桥梁:缩小差距。

Yue Ren的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yue Ren', 18)}}的其他基金

Computational Tropical Geometry and its Applications
计算热带几何及其应用
  • 批准号:
    MR/Y003888/1
  • 财政年份:
    2024
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Fellowship
Computational tropical geometry and its applications
计算热带几何及其应用
  • 批准号:
    MR/S034463/2
  • 财政年份:
    2021
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Fellowship

相似国自然基金

南亚热带人工林树种组配对土壤有机碳化学稳定性的影响
  • 批准号:
    32301559
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于水分关系探讨季节性干旱对北热带季雨林树木径向生长的影响
  • 批准号:
    32301553
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
珠江三角洲史前亚热带森林植物的利用和管理
  • 批准号:
    42302004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热带森林动态植被与土壤微生物耦合模型构建与应用
  • 批准号:
    42371032
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
不同菌根类型树种对亚热带森林土壤有机碳积累的影响机制
  • 批准号:
    32371849
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Computational Tropical Geometry and its Applications
计算热带几何及其应用
  • 批准号:
    MR/Y003888/1
  • 财政年份:
    2024
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Fellowship
Tropical geometry and the moduli space of Prym varieties
热带几何和 Prym 簇的模空间
  • 批准号:
    EP/X002004/1
  • 财政年份:
    2023
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Research Grant
RUI: Volumes in tropical geometry
RUI:热带几何中的体积
  • 批准号:
    2302024
  • 财政年份:
    2023
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Standard Grant
Tropical Geometry
热带几何
  • 批准号:
    572775-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 88.41万
  • 项目类别:
    University Undergraduate Student Research Awards
Tropical Geometry
热带几何
  • 批准号:
    572775-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 88.41万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了