Computational prediction of hot-electron chemistry: Towards electronic control of catalysis
热电子化学的计算预测:迈向催化的电子控制
基本信息
- 批准号:MR/S016023/1
- 负责人:
- 金额:$ 149.23万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Higher living standards and a growing world population are the drivers behind continuous increases in greenhouse gas emission and industrial energy use. This provides growing pressure on chemical industries to develop more sustainable and efficient chemical transformations based on innovative new technologies. Light-driven plasmonic catalysis offers a promising route to more sustainable and energy efficient chemical transformations than conventional industrial-scale catalysis by replacing petrochemical reactants and energy sources with abundant feedstocks such as carbon dioxide from the atmosphere and renewable energy from sunlight. In addition, light energy can selectively be transferred via excited electrons in metal nanoparticles, so-called "hot" electrons, to molecules and enables more specific chemical reactions than conventional catalysis, potentially increasing yield and decreasing unwanted side products. Underlying this unconventional form of chemistry is the intricate coupling of light, hot electrons, and reactant molecules, the lack of understanding of which has inhibited systematic design and study of reaction parameters such as particle size, shape, and optimal light exposure. A predictive theory of hot-electron chemistry will support the adaptation of this technology in the chemical industry, which holds the potential to significantly reduce the industry's carbon footprint.The aim of this project is to develop and exploit a computational simulation framework to understand, predict, and design light-driven chemical reactions on light-sensitive metallic nanoparticles and surfaces, so-called plasmonic nanocatalysts. The vision behind this fellowship is to provide quantum theoretical methods that fill a conceptual and methodological gap by providing accurate and feasible computational prediction of experimentally measurable chemical reaction rates as a function of catalyst design parameters relevant to the real-world application of this technology. In synergy with experimental project partners, the fellow will lead a research team of 2 postdoctoral researchers to develop highly efficient computational chemistry methodology, which will be applied to scrutinize mechanistic proposals, support and guide experimental efforts on light-driven plasmonic carbon dioxide reduction chemistry, and to construct reaction rate models relevant to improve the industrial viability of this technology. The aim is to provide a step-change in the mechanistic understanding of light-driven plasmonic reduction catalysis on the example of carbon monoxide and carbon dioxide transformation to enable rational design of catalyst materials with wide implications for continuous photochemistry and electrochemistry applications in industry. These applications will be explored by continuous engagement efforts of the fellow with leading chemical and petrochemical companies. With this project, the fellow will establish an international track record by fostering existing and establishing new collaborations with the goal to become a recognized researcher in this comparably young field.
更高的生活水平和不断增长的世界人口是温室气体排放和工业能源使用持续增加的驱动力。这给化学工业带来了越来越大的压力,要求他们基于创新的新技术开发更可持续、更高效的化学转化。光驱动等离子体催化通过用丰富的原料(例如来自大气的二氧化碳和来自阳光的可再生能源)替代石化反应物和能源,为比传统工业规模催化更可持续和更节能的化学转化提供了一条有前景的途径。此外,光能可以通过金属纳米粒子中的激发电子(所谓的“热”电子)选择性地转移到分子,并实现比传统催化更具体的化学反应,从而潜在地提高产量并减少不需要的副产物。这种非常规化学形式的基础是光、热电子和反应物分子的复杂耦合,缺乏对这种耦合的理解阻碍了对反应参数(例如颗粒尺寸、形状和最佳光照)的系统设计和研究。热电子化学的预测理论将支持该技术在化学工业中的应用,该技术有可能显着减少该行业的碳足迹。该项目的目的是开发和利用计算模拟框架来理解、预测,并设计光敏金属纳米粒子和表面上的光驱动化学反应,即所谓的等离子体纳米催化剂。该奖学金背后的愿景是提供量子理论方法,通过对实验可测量的化学反应速率提供准确且可行的计算预测,作为与该技术的实际应用相关的催化剂设计参数的函数,从而填补概念和方法上的空白。与实验项目合作伙伴协同,该研究员将领导一个由两名博士后研究人员组成的研究团队开发高效的计算化学方法,该方法将用于仔细审查机械建议,支持和指导光驱动等离子体二氧化碳还原化学的实验工作,并构建相关的反应速率模型以提高该技术的工业可行性。目的是以一氧化碳和二氧化碳转化为例,为光驱动等离子体还原催化的机理理解提供阶跃变化,从而实现催化剂材料的合理设计,对工业中的连续光化学和电化学应用具有广泛的影响。该研究员将通过与领先的化学和石化公司的持续合作来探索这些应用。通过这个项目,该研究员将通过促进现有的和建立新的合作来建立国际记录,目标是成为这个相对年轻的领域中公认的研究人员。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Zinc-Porphine on Coinage Metal Surfaces: Adsorption Configuration and Ligand-Induced Central Atom Displacement
造币金属表面上的锌-卟啉:吸附构型和配体诱导的中心原子位移
- DOI:10.1021/acs.jpcc.3c00232
- 发表时间:2023-04-10
- 期刊:
- 影响因子:0
- 作者:A. Baklanov;Johannes T. Küchle;D. Duncan;P. Ryan;R. Maurer;M. Schwarz;Eduardo Corral Rascon;I. Piquero;H. Ngo;A. Riss;F. Allegretti;W. Auwärter
- 通讯作者:W. Auwärter
Efficient implementation and performance analysis of the independent electron surface hopping method for dynamics at metal surfaces
金属表面动力学独立电子表面跳跃方法的高效实现和性能分析
- DOI:http://dx.10.1063/5.0137137
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Gardner J
- 通讯作者:Gardner J
Determining the Effect of Hot Electron Dissipation on Molecular Scattering Experiments at Metal Surfaces.
确定热电子耗散对金属表面分子散射实验的影响。
- DOI:http://dx.10.1021/jacsau.0c00066
- 发表时间:2021
- 期刊:
- 影响因子:8
- 作者:Box CL
- 通讯作者:Box CL
Stability of Single Gold Atoms on Defective and Doped Diamond Surfaces.
有缺陷和掺杂的金刚石表面上单金原子的稳定性。
- DOI:http://dx.10.1021/acs.jpcc.3c03900
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chaudhuri S
- 通讯作者:Chaudhuri S
Coexistence of carbonyl and ether groups on oxygen-terminated (110)-oriented diamond surfaces
氧封端 (110) 取向金刚石表面上羰基和醚基的共存
- DOI:10.1038/s43246-022-00228-4
- 发表时间:2022-01-28
- 期刊:
- 影响因子:7.8
- 作者:Shayantan Chaudhuri;Samuel J Hall;Benedikt P. Klein;M. Walker;A. Logsdail;J. Macpherson;R. Maurer
- 通讯作者:R. Maurer
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reinhard J. Maurer其他文献
Molecular Topology and the Surface Chemical Bond: Alternant Versus Nonalternant Aromatic Systems as Functional Structural Elements
分子拓扑和表面化学键:作为功能结构元素的交替芳香族系统与非交替芳香族系统
- DOI:
10.1103/physrevx.9.011030 - 发表时间:
2019-02-13 - 期刊:
- 影响因子:12.5
- 作者:
Benedikt P. Klein;Nadine J. van der Heijden;Stefan R. Kachel;M. Franke;Claudio K. Krug;Katharina K. Greulich;Lukas Ruppenthal;P. Müller;P. Rosenow;S. Parhizkar;F. Bocquet;M. Schmid;W. Hieringer;Reinhard J. Maurer;R. Tonner;C. Kumpf;I. Swart;J. M. Gottfried - 通讯作者:
J. M. Gottfried
Hot electron effects during reactive scattering of H2from Ag(111): assessing the sensitivity to initial conditions, coupling magnitude, and electronic temperature
- DOI:
10.1039/c8fd00140e - 发表时间:
2018-12 - 期刊:
- 影响因子:3.4
- 作者:
Reinhard J. Maurer;Yaolong Zhang;Hua Guo;Bin Jiang - 通讯作者:
Bin Jiang
Structure of Graphene Grown on Cu(111): X-Ray Standing Wave Measurement and Density Functional Theory Prediction.
Cu(111) 上生长的石墨烯结构:X 射线驻波测量和密度泛函理论预测。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:8.6
- 作者:
Matthew A. Stoodley;L. A. Rochford;Tien;Benedikt P. Klein;David A. Duncan;Reinhard J. Maurer - 通讯作者:
Reinhard J. Maurer
Long-range dispersion-inclusive machine learning potentials for structure search and optimization of hybrid organic–inorganic interfaces
- DOI:
10.1039/d2dd00016d - 发表时间:
2022-06 - 期刊:
- 影响因子:0
- 作者:
Julia Westermayr;Shayantan Chaudhuri;Andreas Jeindl;Oliver T. Hofmann;Reinhard J. Maurer - 通讯作者:
Reinhard J. Maurer
Photoswitching in nanoporous, crystalline solids: an experimental and theoretical study for azobenzene linkers incorporated in MOFs
- DOI:
10.1039/c5cp01372k - 发表时间:
2015-05 - 期刊:
- 影响因子:3.3
- 作者:
Zhengbang Wang;Lars Heinke;Jelena Jelic;Murat Cakici;Marcel Dommaschk;Reinhard J. Maurer;Harald Oberhofer;Sylvain Grosjean;Rainer Herges;Stefan Bräse;Karsten Reuter;Christof Wöll - 通讯作者:
Christof Wöll
Reinhard J. Maurer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reinhard J. Maurer', 18)}}的其他基金
Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
利用第一原理计算解决 X 射线光电子能谱中的峰分配问题
- 批准号:
EP/Y037022/1 - 财政年份:2024
- 资助金额:
$ 149.23万 - 项目类别:
Research Grant
Computational prediction of hot-electron chemistry: Towards electronic control of catalysis
热电子化学的计算预测:迈向催化的电子控制
- 批准号:
MR/X023109/1 - 财政年份:2023
- 资助金额:
$ 149.23万 - 项目类别:
Fellowship
Atomic-scale design of superlubricity of carbon nanostructures on metallic substrates
金属基底上碳纳米结构超润滑性的原子尺度设计
- 批准号:
EP/Y024923/1 - 财政年份:2023
- 资助金额:
$ 149.23万 - 项目类别:
Fellowship
Deep learning enabled simulation of plasmonic photocatalysis
深度学习能够模拟等离子体光催化
- 批准号:
EP/X014088/1 - 财政年份:2022
- 资助金额:
$ 149.23万 - 项目类别:
Research Grant
相似国自然基金
强子三维结构分布函数的理论预言
- 批准号:12375080
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
次次领头阶anti-kT以及同类型的喷注函数和pA对撞中喷注向前产生的预言
- 批准号:12175016
- 批准年份:2021
- 资助金额:63 万元
- 项目类别:面上项目
理论预言的三维碳同素异构体T-carbon的制备及其物性的实验深入研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
原子核经验平均场的理论建模不确定性及预言能力优化研究
- 批准号:11975209
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
Android应用的模糊测试关键技术研究
- 批准号:61772056
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
相似海外基金
Computational prediction of hot-electron chemistry: Towards electronic control of catalysis
热电子化学的计算预测:迈向催化的电子控制
- 批准号:
MR/X023109/1 - 财政年份:2023
- 资助金额:
$ 149.23万 - 项目类别:
Fellowship
Oncogenic pathway-induced fragile sites: a new paradigm for understanding genome instability in cancer
致癌途径诱导的脆弱位点:了解癌症基因组不稳定性的新范例
- 批准号:
10589809 - 财政年份:2022
- 资助金额:
$ 149.23万 - 项目类别:
Arbovirus Prediction and Mitigation in the Indo-Pacific
印度-太平洋地区的虫媒病毒预测和缓解
- 批准号:
10429130 - 财政年份:2022
- 资助金额:
$ 149.23万 - 项目类别:
Arbovirus Prediction and Mitigation in the Indo-Pacific
印度-太平洋地区的虫媒病毒预测和缓解
- 批准号:
10583513 - 财政年份:2022
- 资助金额:
$ 149.23万 - 项目类别:
Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速发现新型化学探针
- 批准号:
10398798 - 财政年份:2021
- 资助金额:
$ 149.23万 - 项目类别: