Visualising Glycoprotein Interaction Dynamics

糖蛋白相互作用动力学可视化

基本信息

  • 批准号:
    MR/V02213X/1
  • 负责人:
  • 金额:
    $ 155.67万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

In our cells, the functions that are vital for life-from fighting infection to replicating DNA-are carried out by proteins. These are regulated by a complex array of mechanisms, including protein-protein interactions and chemical modifications. A common protein modification is glycosylation-an intricate, non-template driven process that adds complex carbohydrate molecules, or glycans, to individual amino acids. It is estimated that half of human proteins are glycosylated, and glycan structures have a huge impact on the protein. By interacting with other proteins and biomolecules, glycans bound to a protein can alter that protein's structure and function, where it is goes in a cell, and its homeostasis. The importance of glycoslation is illustrated by a set of human conditions known as the Congenital Disorders of Glycosylation, where mild defects in glycan biosynthesis lead to severe multisystem malfunction, organ failure and even premature death. Glycosylation is highly relevant to the biopharmaceutical industry. It affects the safety and efficacy of monoclonal antibodies and other therapeutic 'biologics'-a rapidly growing class of drugs for treating conditions including cancers and autoimmune diseases. Glycans are also of central importance to many viruses, including influenza and Ebola, which evade our immune systems by hiding under a dynamic, dense 'glycan shield'. Despite the clear importance of glycosylation, we know surprisingly little about how glycans influence the properties and interactions of the proteins they are bound to. One of the main reasons for this lack of knowledge is simply that glycans are very difficult to study. They form a bewildering array of complex, dynamic structures, and their analysis eludes even today's most powerful tools. Due to the prevalence of glycoproteins in biomolecular interactions, unravelling their inherent structural complexity in order to understand protein function is fundamentally important but requires creative and pioneering methodologies. I plan to address the current critical lack of tools by developing an approach that combines existing techniques in a new way, creating a powerful method for capturing the interactions that take place between glycans and other molecules. Our approach will combine chemical crosslinking-which makes it possible to monitor even short-lived protein interactions or dynamical properties but is currently unsuited for glycans-and metabolic glycoprotein engineering-to incorporate chemical 'tags' into glycans that will enable crosslinking. We will also use cutting-edge computational and single-molecule mass measurement techniques to gather complementary data to help us interpret the information from the crosslinking approach. As part of this work, we will apply our new approach to study glycosylation in influenza, Ebola glycosylation, human antibody-receptor recognition and monoclonal antibodies, thus expanding our knowledge of glycan function in health, disease and drug development. The aim of my Future Leaders Fellowship is to transform our ability to study and visualise glycoproteins. I believe that we can create the tools we need to address complex long-standing biological questions involving glycoproteins, and I plan to develop such a tool. My approach will enable new biological discoveries by providing an unprecedented level of detail about glycoprotein interaction dynamics. In addition to the important discoveries anticipated to arise directly from this project, the method represents a paradigm shift for the study of glycoproteins.
在我们的细胞中,对生命中的感染至关重要的功能复制蛋白质进行的DNA-DNA。这些由复杂的机制调节,包括蛋白质 - 蛋白质相互作用和化学修饰。一种常见的蛋白质修饰是糖基化 - 复杂的非板驱动过程,该过程将复杂的碳水化合物分子或聚糖添加到单个氨基酸中。据估计,一半的人蛋白是糖基化的,并且聚糖结构对蛋白质产生巨大影响。通过与其他蛋白质和生物分子相互作用,与蛋白质结合的聚糖可以改变该蛋白质的结构和功能,即在细胞中及其稳态。一组被称为糖基化先天性疾病的人类疾病的重要性来说明糖基化的重要性,在这些人的糖基化疾病中,聚糖生物合成中的轻度缺陷导致严重的多系统故障,器官衰竭甚至过早死亡。糖基化与生物制药行业高度相关。它影响单克隆抗体和其他治疗性“生物制剂”的安全性和功效 - 一种快速生长的药物,用于治疗包括癌症和自身免疫性疾病在内的疾病。对于许多病毒,包括流感和埃博拉病毒在内的许多病毒也至关重要,这些病毒通过隐藏在动态,密集的“聚糖盾牌”下来逃避我们的免疫系统。尽管糖基化的重要性显而易见,但我们对聚糖如何影响它们所束缚的蛋白质的特性和相互作用知之甚少。缺乏知识的主要原因之一就是很难研究聚糖。它们形成了一个令人困惑的复杂,动态结构的阵列,即使在当今最强大的工具中,它们也可以进行分析。由于糖蛋白在生物分子相互作用中的普遍性,因此揭开其固有的结构复杂性以了解蛋白质功能在根本上很重要,但需要创造性和开拓性方法。我计划通过开发一种以新方式相结合现有技术的方法来解决当前对工具的批判性缺乏,从而创造了一种强大的方法来捕获聚糖和其他分子之间发生的相互作用。我们的方法将结合化学交联 - 使得甚至可以监测短寿命的蛋白质相互作用或动力学特性,但目前不适合聚糖和代谢性糖蛋白工程,可以将化学“标签”纳入将启用交联的聚糖中。我们还将使用前沿计算和单分子质量测量技术来收集互补数据,以帮助我们从交联方法中解释信息。作为这项工作的一部分,我们将采用新方法来研究流感,埃博拉糖基化,人类抗体受体识别和单克隆抗体的糖基化,从而扩大了我们对健康,疾病和药物发育中的聚糖功能的了解。我未来的领导者奖学金的目的是改变我们研究和可视化糖蛋白的能力。我相信我们可以创建所需的工具来解决涉及糖蛋白的复杂长期存在的生物学问题,我计划开发这种工具。我的方法将通过提供有关糖蛋白相互作用动态的前所未有的细节来实现新的生物学发现。除了预计直接来自该项目的重要发现外,该方法还代表了研究糖蛋白的范式转变。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Label-free methods for optical in vitro characterization of protein-protein interactions.
Mass photometry reveals SARS-CoV-2 spike stabilisation to impede ACE2 binding through altered conformational dynamics.
  • DOI:
    10.1039/d2cc04711j
  • 发表时间:
    2022-11-22
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Burnap, Sean A.;Struwe, Weston B.
  • 通讯作者:
    Struwe, Weston B.
Uncovering the Role of N-Glycan Occupancy on the Cooperative Assembly of Spike and Angiotensin Converting Enzyme 2 Complexes: Insights from Glycoengineering and Native Mass Spectrometry.
  • DOI:
    10.1021/jacs.3c00291
  • 发表时间:
    2023-04-12
  • 期刊:
  • 影响因子:
    15
  • 作者:
    El-Baba, Tarick J.;Lutomski, Corinne A.;Burnap, Sean A.;Bolla, Jani R.;Baker, Lindsay A.;Baldwin, Andrew J.;Struwe, Weston B.;Robinson, Carol V.
  • 通讯作者:
    Robinson, Carol V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weston Struwe其他文献

Weston Struwe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weston Struwe', 18)}}的其他基金

Mapping Protein Glycosylation by High-Resolution Single Molecule Imaging
通过高分辨率单分子成像绘制蛋白质糖基化图谱
  • 批准号:
    BB/W017024/1
  • 财政年份:
    2023
  • 资助金额:
    $ 155.67万
  • 项目类别:
    Research Grant
Advancing 'omics discovery via trapped ion mobility spectrometry
通过俘获离子淌度光谱法推进组学发现
  • 批准号:
    BB/X019519/1
  • 财政年份:
    2023
  • 资助金额:
    $ 155.67万
  • 项目类别:
    Research Grant

相似国自然基金

埃博拉病毒糖蛋白GP通过与蛋白酶激活受体PAR1相互作用调控病毒进入和宿主凝血
  • 批准号:
    82372255
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
靶向GPcl的新型小分子埃博拉病毒进入抑制剂EEI-10的结构优化及作用机制研究
  • 批准号:
    81802019
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
整合素β1蛋白通过与狂犬病病毒糖蛋白相互作用影响病毒感染的机制研究
  • 批准号:
    31800138
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
EB病毒通过gHgL二聚体与整合素α3β4亚基的相互作用感染鼻咽上皮细胞的研究
  • 批准号:
    81702001
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
单纯疱疹病毒囊膜糖蛋白gI曲膜特性的分子机制及生物学意义
  • 批准号:
    31770171
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidation of Tumor Resistance Mechanisms in Tuberous Sclerosis Complex-Associated Renal Angiomyolipoma for the Design of Novel Nanotherapies
阐明结节性硬化症相关肾血管平滑肌脂肪瘤的肿瘤抵抗机制,用于设计新型纳米疗法
  • 批准号:
    10585048
  • 财政年份:
    2023
  • 资助金额:
    $ 155.67万
  • 项目类别:
Project 1. Maturation and Assembly
项目 1. 成熟和组装
  • 批准号:
    10653262
  • 财政年份:
    2022
  • 资助金额:
    $ 155.67万
  • 项目类别:
Defining the Molecular Determinants of Encephalitic Alphavirus Viremia
定义脑炎甲病毒血症的分子决定因素
  • 批准号:
    10599124
  • 财政年份:
    2022
  • 资助金额:
    $ 155.67万
  • 项目类别:
Pittsburgh Center for HIV Protein Interactions (PCHPI)
匹兹堡 HIV 蛋白质相互作用中心 (PCHPI)
  • 批准号:
    10506945
  • 财政年份:
    2022
  • 资助金额:
    $ 155.67万
  • 项目类别:
Project 1. Maturation and Assembly
项目 1. 成熟和组装
  • 批准号:
    10506952
  • 财政年份:
    2022
  • 资助金额:
    $ 155.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了