Quantum Photonics for Scale
规模化量子光子学
基本信息
- 批准号:MR/T041773/1
- 负责人:
- 金额:$ 155.46万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum information technology seeks to encode bits and bytes of information onto microscopic quantum systems. Governed by quantum mechanics, these systems can be in superposition, can interfere, and entangle, revolutionising devices which collect data, communicate, and compute. Future quantum sensors will measure with precision beyond the classical shot-noise limit; quantum transceivers will fundamentally guarantee security and detect eavesdroppers; and quantum computers, the most ambitious of quantum devices, will tremendously accelerate certain calculations.Photons, quanta of light, have several attractive properties: they travel, allowing information to move quickly within and between devices; they are low noise, crucial for low error rates; and they are the quantum system for which, through 1000 years of optics, we have developed the best intuition and the most mature technology. Despite this, optical elements-lenses, mirrors, shutters, beamsplitters, crystals-perform too poorly, and are too bulky and manual, for example, to put quantum sensors in a smartphone, or to build quantum computers with millions of elements. Photon-photon interactions naturally depend on chance, but new ideas suggest clever control systems can inject certainty. Crucially required are: optical switches, electronics, and single-photon detectors. For success, all these elements must be integrated and delivered at scale.Scalability-the ability to increase complexity without limit-is what photonics has so far lacked, in both size and performance. To achieve large-scale quantum computation with photons or the large-scale deployment of devices for optical quantum sensing and communication-to make quantum photonics useful-it must scale up. This programme will critically re-engineer quantum photonics for scale. It will build a platform from which fantastic quantum devices can be launched, and it will launch them.Silicon electronics is now ubiquitous, with high performance and extreme complexity. Silicon photonics has followed on its coat-tails, with microscopic optical elements, huge wafers, global manufacturing, and unrivalled know-how. In recent years, silicon photonics has grown into a huge research activity and a multi-billion-pound industry. This has propelled compact silicon quantum photonics, pioneered by the fellow, into unprecedented quantum complexity and functionality.In quantum optics, to lose a single photon is to lose irreplaceable quantum information. Silicon photonics is compact, but far too lossy: surface roughness and two-photon absorption are the main culprits. Light with long wavelengths, in the mid-infrared, however, can dodge both mechanisms, and pass with very little loss. In silicon, long-wavelength light is also more nonlinear, and optics for it are easier to make.This fellowship will combine the compactness and performance of silicon electronics and silicon quantum photonics to achieve high complexity and manufacturability, with performance enhanced by mid-infrared quantum optics and new technologies. By cleverly integrating very cold single-photon detectors (and so making the electronics and photonics very cold too) a quantum photonics platform for scale will be built. The fellow and his team, with help from collaborators, will pursue five objectives towards this aim: (1) to develop an ultra-low-loss chip optics platform based on mid-infrared silicon photonics, with low-loss fibre-chip couplers and delay lines; (2) to develop an ultra-fast, low-temperature, silicon-based electronic controller to dispense with chance; (3) to develop suitable fast and low-power electronic-to-optical interfaces; (4) to develop the infrastructure to do this at low temperatures; and (5) to launch fantastic quantum devices from the assembled platform.
量子信息技术试图将信息和字节编码到微观量子系统上。这些系统受量子力学的约束,可以叠加,可以干扰和纠缠,革新收集数据,通信和计算的设备。未来的量子传感器将以超出经典的射击限制的精度测量;量子收发器将从根本上保证安全并检测窃听者;量子计算机(最雄心勃勃的量子设备)将极大地加速某些计算。光子,量子的光,具有几种有吸引力的特性:它们传播,允许信息在设备之间和之间迅速移动;它们是低噪声,对于低错误率至关重要;它们是量子系统,在1000年的光学上,我们开发了最佳的直觉和最成熟的技术。尽管如此,光学元素镜头,镜子,百叶窗,梁弹式,晶体表现效果太差,例如笨重和手动,例如,将量子传感器放入智能手机中或构建具有数百万个元素的量子计算机。 Photon-Photon相互作用自然取决于机会,但是新想法表明,聪明的控制系统可以注入确定性。至关重要的是:光开关,电子和单光子检测器。为了获得成功,所有这些元素必须按大规模整合和交付。Scalibal-Scalisity-提高复杂性而无需限制的能力 - 这是迄今为止的大小和性能所缺乏的。要使用光子或设备大规模部署进行光学量子传感和通信的大规模量子计算,以使量子光子学有用 - 必须扩大。该程序将重新设计量子光子学以进行规模重新设计。它将建立一个平台,可以从该平台上启动出色的量子设备,并将启动它们。SiliconElectronics现在无处不在,具有高性能和极端的复杂性。硅光子学遵循其大衣尾巴,带有微观光学元素,巨大的晶片,全球制造和无与伦比的专有技术。近年来,硅光子学已发展为一项巨大的研究活动和数十亿磅的行业。这已经推动了由同伴开创的紧凑型硅量子光子学,成为前所未有的量子复杂性和功能。在量子光学上,失去单个光子是失去不可替代的量子信息。硅光子学是紧凑的,但造成的损失太大:表面粗糙度和两光子吸收是主要的罪魁祸首。然而,在中红外,具有长波长的光可以躲避这两种机制,并且损失很小。在硅中,长波长光也更加非线性,并且更容易制作光学。该研究金将结合硅电子设备和硅量子光子学的紧凑性和性能,以实现高复杂性和生产性,并在中型量子量子量子和新技术中增强性能。通过巧妙地集成了非常冷的单光子探测器(因此,也使电子和光子学也非常冷)建立了一个量子比例的量子平台。同伴和他的团队在合作者的帮助下,将实现五个目标:(1)基于中红外硅光子学,开发一个超低损失的芯片光学平台,并具有低损失的纤维芯片耦合器和延迟线; (2)开发一个超快速,低温,基于硅的电子控制器,以偶然消除; (3)开发合适的快速和低功率电子到光学界面; (4)开发基础设施在低温下进行此操作; (5)从组装平台启动出色的量子设备。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shot-noise limited homodyne detection for MHz quantum light characterisation in the 2 µm band.
散粒噪声限制零差检测,用于 2 µm 波段 MHz 量子光表征。
- DOI:10.1364/oe.450217
- 发表时间:2022
- 期刊:
- 影响因子:3.8
- 作者:Biele J
- 通讯作者:Biele J
Engineering Low-Loss Silicon Quantum Photonics in the Mid-Infrared
中红外低损耗硅量子光子学工程
- DOI:10.1109/cleo/europe-eqec52157.2021.9541667
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Sulway D
- 通讯作者:Sulway D
Quantum Absorption Estimation for Saturable Samples
可饱和样品的量子吸收估计
- DOI:10.1364/cleo_at.2021.jw1a.139
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Biele J
- 通讯作者:Biele J
Electro-optic Kerr Modulation in Wide Silicon Waveguides in the Mid-IR
中红外宽硅波导中的电光克尔调制
- DOI:10.1109/cleo/europe-eqec52157.2021.9542294
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Sayers B
- 通讯作者:Sayers B
Maximizing precision in saturation-limited absorption measurements
- DOI:10.1103/physreva.104.053717
- 发表时间:2021-11-22
- 期刊:
- 影响因子:2.9
- 作者:Biele, Jake;Wollmann, Sabine;Allen, Euan J.
- 通讯作者:Allen, Euan J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Silverstone其他文献
Joshua Silverstone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
磁场调控分子材料阵列组装用于可重构光子学器件
- 批准号:52303262
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
叠层二维狄拉克电子体系中的等离激元光子学
- 批准号:12274301
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
基于新型光子晶体细胞力学显微镜的乳腺癌转移力学生物学研究
- 批准号:12202212
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有机杂化超高品质因子微腔非线性光子学研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于光子学的毫米波通信感知深度融合机理
- 批准号:62201393
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
QC:SCALE - Quantum Circuits: Systematically Controlling And Linking Emitters for integrated solid state photonics platforms
QC:SCALE - 量子电路:系统地控制和链接集成固态光子平台的发射器
- 批准号:
EP/W006685/1 - 财政年份:2022
- 资助金额:
$ 155.46万 - 项目类别:
Research Grant
Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
- 批准号:
2326780 - 财政年份:2022
- 资助金额:
$ 155.46万 - 项目类别:
Standard Grant
Large scale integrated quantum photonics for simulating particle physics
用于模拟粒子物理的大规模集成量子光子学
- 批准号:
2762630 - 财政年份:2022
- 资助金额:
$ 155.46万 - 项目类别:
Studentship
Multi-scale analysis of the photocurrent response and dynamic properties of antiferromagnets
反铁磁体光电流响应和动态特性的多尺度分析
- 批准号:
21J00453 - 财政年份:2021
- 资助金额:
$ 155.46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Light-matter interactions and quantum photonics in nano-scale semiconductor structures and devices
纳米级半导体结构和器件中的光与物质相互作用和量子光子学
- 批准号:
EP/S030751/1 - 财政年份:2020
- 资助金额:
$ 155.46万 - 项目类别:
Research Grant