Transfer Optimisation System for Adaptive Automated Nature-Inspired Optimisation
用于自适应自动自然优化的传输优化系统
基本信息
- 批准号:MR/S017062/1
- 负责人:
- 金额:$ 139.86万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hard optimisation problems are ubiquitous across the breadth of science, engineering and economics. For example, in water system planning and management, water companies are often interested in optimising several system performance measures of their infrastructures in order to provide sustainable and resilient water/wastewater services that are able to cope with and recover from disruption, as well as wider challenges brought by climate change and population increase. As a classic discipline, significant advances in both theory and algorithms have been achieved in optimisation. However, almost all traditional optimisation solvers, ranging from classic methods to nature-inspired computational intelligence techniques, ignore some important facts: (i) real-world optimisation problems seldom exist in isolation; and (ii) artificial systems are designed to tackle a large number of problems over their lifetime, many of which are repetitive or inherently related. Instead, optimisation is run as a 'one-off' process, i.e. it is started from scratch by assuming zero prior knowledge each time. Therefore, knowledge/experience from solving different (but possibly related) optimisation exercises (either previously completed or currently underway), which can be useful for enhancing the target optimisation task at hand, will be wasted. Although the Bayesian optimisation considers incorporating some decision maker's knowledge as a prior, the gathered experience during the optimisation process is discarded afterwards. In this case, we cannot expect any automatic growth of their capability with experience. This practice is counter-intuitive from the cognitive perspective where humans routinely grow from a novice to domain experts by gradually accumulating problem-solving experience and making use of existing knowledge to tackle new unseen tasks. In machine learning, leveraging knowledge gained from related source tasks to improve the learning of the new task is known as transfer learning, an emerging field that considerable success has been witnessed in a wide range of application domains. There have been some attempts on applying transfer learning in evolutionary computation, but they do not consider the optimisation as a closed-loop system. Moreover, the recurrent patterns within problem-solving exercises have been discarded after optimisation, thus experience cannot be accumulated over time.The proposed research will develop a revolutionary general-purpose optimiser (as known as transfer optimisation system) that will be able to learn knowledge/experience from previous optimisation process and then autonomously and selectively transfer such knowledge to new unseen optimisation tasks. The transfer optimisation system places adaptive automation at the heart of the development process and explores novel synergies at the crossroads of several disciplines including nature-inspired computation, machine learning, human-computer interaction and high-performance parallel computing. The outputs will bring automation in industry, including an optimised/shortened production cycle, reduced resource consumption and more balanced and innovative products, which have great potentials to result in economic savings and an increase of turnover. The proposed methods will be rigorously evaluated by the industrial partners, first in water industry and will be expanded to a boarder range of sectors which put the optimisation at the heart of their regular production/management process (e.g. renewable energy, healthcare, automotive, appliance and medicine manufacturers).
硬优化问题在科学、工程和经济学领域中普遍存在。例如,在供水系统规划和管理中,供水公司通常有兴趣优化其基础设施的多项系统性能指标,以提供可持续且有弹性的供水/废水服务,能够应对中断并从中恢复,以及更广泛的服务。气候变化和人口增长带来的挑战。作为一门经典学科,优化在理论和算法上都取得了重大进展。然而,几乎所有传统的优化求解器,从经典方法到受自然启发的计算智能技术,都忽略了一些重要事实:(i)现实世界的优化问题很少孤立存在; (ii) 人工系统的设计目的是在其生命周期内解决大量问题,其中许多问题是重复的或本质上相关的。相反,优化是作为“一次性”过程运行的,即每次都假设先验知识为零,从头开始。因此,解决不同(但可能相关)优化练习(之前已完成或当前正在进行)的知识/经验(对于增强手头的目标优化任务可能有用)将被浪费。尽管贝叶斯优化考虑将一些决策者的知识作为先验,但在优化过程中收集的经验随后被丢弃。在这种情况下,我们不能指望他们的能力会随着经验而自动增长。从认知角度来看,这种做法是违反直觉的,人类通常通过逐渐积累解决问题的经验并利用现有知识来解决新的看不见的任务来从新手成长为领域专家。在机器学习中,利用从相关源任务中获得的知识来改进新任务的学习被称为迁移学习,这是一个新兴领域,在广泛的应用领域中取得了巨大的成功。在进化计算中应用迁移学习已经有一些尝试,但他们并没有将优化视为闭环系统。此外,问题解决练习中的重复模式在优化后已被丢弃,因此经验无法随着时间的推移而积累。拟议的研究将开发一种革命性的通用优化器(称为转移优化系统),它将能够学习知识/从以前的优化过程中获得经验,然后自主地、有选择性地将这些知识转移到新的看不见的优化任务中。传输优化系统将自适应自动化置于开发过程的核心,并探索自然启发计算、机器学习、人机交互和高性能并行计算等多个学科交叉点的新颖协同作用。这些成果将带来工业自动化,包括优化/缩短生产周期、减少资源消耗以及更加平衡和创新的产品,这些都具有巨大的潜力,可以节省经济并增加营业额。所提出的方法将由工业合作伙伴进行严格评估,首先是水行业,并将扩展到一系列将优化作为常规生产/管理流程核心的行业(例如可再生能源、医疗保健、汽车、家电)和药品制造商)。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Routing-Led Placement of VNFs in Arbitrary Networks
- DOI:10.1109/cec48606.2020.9185531
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Joseph Billingsley;Ke Li;W. Miao;G. Min;N. Georgalas
- 通讯作者:Joseph Billingsley;Ke Li;W. Miao;G. Min;N. Georgalas
Transfer Bayesian Optimization for Expensive Black-Box Optimization in Dynamic Environment
- DOI:10.1109/smc52423.2021.9659200
- 发表时间:2021-01-01
- 期刊:
- 影响因子:0
- 作者:Chen, Renzhi;Li, Ke
- 通讯作者:Li, Ke
Data-Driven Evolutionary Multi-Objective Optimization Based on Multiple-Gradient Descent for Disconnected Pareto Fronts
- DOI:10.48550/arxiv.2205.14344
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Renzhi Chen;Ke Li
- 通讯作者:Renzhi Chen;Ke Li
Evolutionary Multi-Criterion Optimization - 10th International Conference, EMO 2019, East Lansing, MI, USA, March 10-13, 2019, Proceedings
进化多标准优化 - 第十届国际会议,EMO 2019,美国密歇根州东兰辛,2019 年 3 月 10-13 日,会议记录
- DOI:10.1007/978-3-030-12598-1_42
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Billingsley J
- 通讯作者:Billingsley J
Transfer Learning-Based Parallel Evolutionary Algorithm Framework for Bilevel Optimization
基于迁移学习的双层优化并行进化算法框架
- DOI:10.1109/tevc.2021.3095313
- 发表时间:2022
- 期刊:
- 影响因子:14.3
- 作者:Chen L
- 通讯作者:Chen L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ke Li其他文献
The joint association of lipoprotein(a) and Lp-PLA2 with the risk of stroke recurrence
脂蛋白(a)和Lp-PLA2与卒中复发风险的联合关联
- DOI:
10.1016/j.jacl.2024.04.133 - 发表时间:
2024 - 期刊:
- 影响因子:4.4
- 作者:
Jing Xue;Yukun Xiang;Xue Jiang;A. Jin;Xiwa Hao;Ke Li;Jinxi Lin;Xia Meng;Hao Li;Lemin Zheng;Yongjun Wang;Jie Xu - 通讯作者:
Jie Xu
Broadband RCS Reduction of Antenna with AMC Using Gradually Concentric Ring Arrangement
采用渐进同心环排列的 AMC 天线宽带 RCS 降低
- DOI:
10.1155/2017/1268947 - 发表时间:
2017 - 期刊:
- 影响因子:1.5
- 作者:
Fuwei Wang;Yuhui Ren;Ke Li - 通讯作者:
Ke Li
Synthesis and anti-tumor activity of novel ethyl 3-aryl-4-oxo-3,3a,4,6-tetrahydro-1H-furo[3,4-c]pyran-3a-carboxylates.
新型3-芳基-4-氧代-3,3a,4,6-四氢-1H-呋喃[3,4-c]吡喃-3a-甲酸乙酯的合成和抗肿瘤活性。
- DOI:
10.1016/j.bmcl.2011.04.003 - 发表时间:
2011 - 期刊:
- 影响因子:2.7
- 作者:
Tiantian Wang;Jia Liu;Hanyu Zhong;Huan Chen;Zhiliang Lv;Yikai Zhang;Mingfeng Zhang;Dongping Geng;Chunjuan Niu;Yongmei Li;Ke Li - 通讯作者:
Ke Li
Normalized Least Mean M-Estimate Algorithm with Switching Step-Sizes Against Impulsive Noises
具有针对脉冲噪声的切换步长的归一化最小均值 M 估计算法
- DOI:
10.1007/s00034-022-02101-8 - 发表时间:
2022-07 - 期刊:
- 影响因子:2.3
- 作者:
Peng Guo;Yi Yu;Hongsen He;Ke Li;Tao Yu - 通讯作者:
Tao Yu
Design of bird flight attitude and track signal recording system based on multi-sensor distribution
基于多传感器分布的鸟类飞行姿态与轨迹信号记录系统设计
- DOI:
10.1109/icsp58490.2023.10248646 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ke Li;Z. Shang;Long Yang;Chengyu Sun - 通讯作者:
Chengyu Sun
Ke Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ke Li', 18)}}的其他基金
Highly integrated GaN power converter to calm the interference
高集成GaN功率转换器,平息干扰
- 批准号:
EP/Y002261/1 - 财政年份:2024
- 资助金额:
$ 139.86万 - 项目类别:
Research Grant
Transfer Optimisation System for Adaptive Automated Nature-Inspired Optimisation
用于自适应自动自然优化的传输优化系统
- 批准号:
MR/X011135/1 - 财政年份:2023
- 资助金额:
$ 139.86万 - 项目类别:
Fellowship
相似国自然基金
基于投入产出系统优化模型的中国环境压力协同效应的测度、演化及提升路径研究:破解环境治理的问题转移难题
- 批准号:72074077
- 批准年份:2020
- 资助金额:48 万元
- 项目类别:面上项目
有顾客转移的服务系统人员配置与调度策略研究
- 批准号:71901142
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
多层网络视角下能源跨区域转移的优化配置与政策研究
- 批准号:71804060
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于分布式状态转移算法的有色冶金过程系统辨识方法研究
- 批准号:61503416
- 批准年份:2015
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
面向下一代无线通信系统的多进制原模图LDPC码的优化设计与性能分析
- 批准号:61501126
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improvement & Optimisation of the Smart Hydrogen Leakage and Compositional Monitoring System
改进
- 批准号:
10090780 - 财政年份:2024
- 资助金额:
$ 139.86万 - 项目类别:
Collaborative R&D
Feasibility and optimisation study for modular cricket farming and harvesting system.
模块化蟋蟀养殖和收获系统的可行性和优化研究。
- 批准号:
10075783 - 财政年份:2023
- 资助金额:
$ 139.86万 - 项目类别:
Collaborative R&D
Optimisation of assessing severity and emergency care to develop the appropriate emergency medical system
优化严重程度和紧急护理评估,以开发适当的紧急医疗系统
- 批准号:
23K16253 - 财政年份:2023
- 资助金额:
$ 139.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Transfer Optimisation System for Adaptive Automated Nature-Inspired Optimisation
用于自适应自动自然优化的传输优化系统
- 批准号:
MR/X011135/1 - 财政年份:2023
- 资助金额:
$ 139.86万 - 项目类别:
Fellowship
AI-Enabled Design Diagnostics and Optimisation System for Mould Prevention (AI-DOMP)
支持人工智能的霉菌预防设计诊断和优化系统 (AI-DOMP)
- 批准号:
10081317 - 财政年份:2023
- 资助金额:
$ 139.86万 - 项目类别:
Collaborative R&D