Dynamic mechanisms of FGFR activation in cancer by kinase mutations

激酶突变在癌症中激活 FGFR 的动态机制

基本信息

  • 批准号:
    MR/P000355/1
  • 负责人:
  • 金额:
    $ 54.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

The way in which cells divide, proliferate and, in turn, die and become 'recycled' must be very carefully regulated in a highly programmed manner. Both development and maturation, as well as normal functioning of the adult organism, need to follow well-defined paths, and responses to environmental influences such as temperature, availability of food etc. must occur in a predictable manner. These responses require very fine control of complex cellular processes at the level of individual molecules. When this fine control breaks down, diseases such as cancer, degenerative disorders (e.g. Alzheimer's disease) and inflammatory conditions can result. Understanding these cellular and molecular processes in detail is important both to understand normal growth and development, and to provide us with insights into how serious diseases can be treated.Fibroblast growth factors (FGFs) are protein 'hormones' produced by certain cells to stimulate the growth of other cells involved in important processes such as the development of an embryo, the growth of new blood vessels and the repair and healing of wounds. FGF molecules bind to the outer parts of FGF receptors (FGFRs), which are proteins that span across the cell's protective outer membrane, and cause FGFR molecules to pair up. The parts of the receptor proteins that are inside the cell, known as kinase domains, are then close enough to activate one another through addition of phosphate 'chemical labels' that induce a change in the shape of the kinase domains from an inactive to an active conformation, causing the kinase domains to activate other proteins in the cell in a 'signalling cascade' that tells the cell to start dividing and proliferating. In turn, this process results in the formation of new tissues. The role of FGFs and FGFRs in formation of new blood vessels is also significant in cancer, where tumour cells often artificially elevate FGFR signalling within and between themselves as a way of securing a supply of nutrients and oxygen for further growth. Starving cancers of their new blood supply by inhibiting FGFR signalling is a promising avenue for treatment, and drug companies are currently developing new medicines that inhibit the activity of FGFRs.Although we understand some of the mechanisms by which the kinase domain of FGFR is activated from static 'snapshots' of the protein by X-ray crystallography, we still lack knowledge of how the flexibility of the kinase protein contributes to this role. Most proteins are not rigid, but need to flex to change their shape, or parts of their shape, in subtle ways to allow them to perform their functions in the cell. We will use an innovative combination of experimental methods including nuclear magnetic resonance spectroscopy (NMR), surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC), together with advanced computational methods, to understand the role of flexibility of the protein in the transition between inactive and active conformations. NMR is a particularly powerful method for investigating flexibility in protein function at the level of individual atoms or groups of atoms, and here we will combine experimental information from NMR with cutting-edge computational modelling of kinase motion to describe these movements in much more detail than has been previously achieved.By understanding the protein motions that govern FGFR kinase activity, we can understand better how FGFRs function in normal tissues and how they can malfunction in certain diseases such as cancers and developmental disorders. For example, mutated forms of FGFRs are found in many cancers. These contain amino acid changes that short-circuit the normal activation process and result in a kinase that is permanently switched 'on'. Our work will lead to enhanced understanding of how to design drugs that specifically inhibit these mutant forms of FGFR, leading ultimately to better treatments for cancers and developmental disorders.
细胞划分,增殖和死亡和“回收”的方式必须非常仔细地以高度编程的方式进行调节。成人生物体的发育和成熟度以及正常的功能都需要遵循明确的路径,并且对环境影响(例如温度,食物的可用性等)的反应必须以可预测的方式发生。这些响应需要对单个分子水平上复杂的细胞过程非常好的控制。当这种良好的控制分解时,可能会导致癌症,退化性疾病(例如阿尔茨海默氏病)和炎症状况。详细了解这些细胞和分子过程对于了解正常的生长和发育既重要,并为我们提供有关如何治疗严重疾病的见解。纤维细胞生长因子(FGFS)是某些细胞产生的蛋白质“激素”,以刺激其他细胞的生长,例如在重要过程中涉及的其他细胞的生长,例如生长的生长,并修复了新的血液和修复的血液和修复。 FGF分子与FGF受体(FGFRS)的外部部分结合,它们是跨细胞保护性外膜的蛋白质,并导致FGFR分子配对。 The parts of the receptor proteins that are inside the cell, known as kinase domains, are then close enough to activate one another through addition of phosphate 'chemical labels' that induce a change in the shape of the kinase domains from an inactive to an active conformation, causing the kinase domains to activate other proteins in the cell in a 'signalling cascade' that tells the cell to start dividing and proliferating.反过来,此过程导致新组织的形成。 FGF和FGFR在形成新血管中的作用在癌症中也很重要,在癌症中,肿瘤细胞通常会人为地升高自身内部和之间的FGFR信号传导,以此作为确保养分供应和氧气的一种方式,以进一步生长。通过抑制FGFR信号传导,饥饿的癌症是一种有希望的治疗途径,目前正在开发抑制FGFR活性的新药物。尽管我们了解了FGFR的激酶结构域的某些机制,这些机制是从静态的“ Snapshots”通过X-Ray Crysemagraphy protigation of Fimention for for for for for for for for for for for的机制。大多数蛋白质不是刚性的,而是需要以微妙的方式改变其形状或形状的一部分,以使其能够在细胞中执行功能。我们将使用包括核磁共振光谱(NMR),表面等离子体共振(SPR)和等温滴定热量法(ITC)的创新组合,以及先进的计算方法,以了解蛋白质在非活性和活跃构象之间的过渡中的柔韧性作用。 NMR是一种特别有力的方法,用于调查单个原子或原子群的蛋白质功能的柔韧性,在这里我们将将NMR的实验信息与激酶运动的尖端计算模型相结合,以更详细地描述这些运动,而不是先前实现的范围。通过了解某些FGFR激酶活动的蛋白质运动,我们可以理解FGFR激酶的蛋白质运动,并能够理解FGFRS的正常状态,使其成为正常的功能。癌症和发育障碍。例如,在许多癌症中发现了突变的FGFR形式。这些含有氨基酸变化,使正常活化过程短路,并导致一种永久切换为“启用”的激酶。我们的工作将使人们对如何设计专门抑制FGFR的突变形式的药物有了加强的理解,最终导致更好地治疗癌症和发育障碍。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure, activation and dysregulation of fibroblast growth factor receptor kinases: perspectives for clinical targeting
  • DOI:
    10.1042/bst20180004
  • 发表时间:
    2018-12-17
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Farrell, Brendan;Breeze, Alexander L.
  • 通讯作者:
    Breeze, Alexander L.
Farseer-NMR: automatic treatment, analysis and plotting of large, multi-variable NMR data.
  • DOI:
    10.1007/s10858-018-0182-5
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Teixeira JMC;Skinner SP;Arbesú M;Breeze AL;Pons M
  • 通讯作者:
    Pons M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Breeze其他文献

Alexander Breeze的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Breeze', 18)}}的其他基金

Structures of full-length FGFR cancer fusions and disease mutants
全长 FGFR 癌症融合体和疾病突变体的结构
  • 批准号:
    MR/W000369/1
  • 财政年份:
    2022
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Research Grant
The chaperone cycle of fibroblast growth factor receptor kinases in molecular detail
成纤维细胞生长因子受体激酶的分子伴侣循环的分子细节
  • 批准号:
    BB/W008017/1
  • 财政年份:
    2022
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Research Grant

相似国自然基金

靶向调控Gremlin1经FGFR1/STAT3信号通路促进巨噬细胞胞葬对根尖周炎消退的影响及机制研究
  • 批准号:
    82301057
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肿瘤相关成纤维细胞中FGFR1通过磷酸化CD147促进黑色素瘤发生发展的作用机制研究
  • 批准号:
    82372934
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
可溶性Klotho调控FGF23/FGFR1/Runx2信号通路在糖尿病肾脏病血管钙化中的应答机制及中药干预作用
  • 批准号:
    82374384
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
CAFs中GPBAR1促进肝外胆管癌FGFR2磷酸化和培米替尼耐药的分子机制
  • 批准号:
    82303324
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
FGFR4-FASN调控脂代谢重塑促进三阴乳腺癌脑转移的分子机制
  • 批准号:
    82372982
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

The mechanisms driving brain oncogenesis by FGFR-TACC gene fusions
FGFR-TACC 基因融合驱动脑肿瘤发生的机制
  • 批准号:
    9265417
  • 财政年份:
    2014
  • 资助金额:
    $ 54.21万
  • 项目类别:
The mechanisms driving brain oncogenesis by FGFR-TACC gene fusions
FGFR-TACC 基因融合驱动脑肿瘤发生的机制
  • 批准号:
    8773917
  • 财政年份:
    2014
  • 资助金额:
    $ 54.21万
  • 项目类别:
The mechanisms driving brain oncogenesis by FGFR-TACC gene fusions
FGFR-TACC 基因融合驱动脑肿瘤发生的机制
  • 批准号:
    8884561
  • 财政年份:
    2014
  • 资助金额:
    $ 54.21万
  • 项目类别:
Study on molecular mechanisms of hepatitis C virus infection.
丙型肝炎病毒感染的分子机制研究。
  • 批准号:
    16017252
  • 财政年份:
    2004
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
ELUCID ATION OF MECHANISMS OF URIN ARY BLADDER CARCINOMAS ASSOCIATED WITH SCHISTOSOMIASIS IN EGYPT
埃及血吸虫病相关膀胱癌发病机制的阐明
  • 批准号:
    16406021
  • 财政年份:
    2004
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了