Dynamic mechanisms of FGFR activation in cancer by kinase mutations

激酶突变在癌症中激活 FGFR 的动态机制

基本信息

  • 批准号:
    MR/P000355/1
  • 负责人:
  • 金额:
    $ 54.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

The way in which cells divide, proliferate and, in turn, die and become 'recycled' must be very carefully regulated in a highly programmed manner. Both development and maturation, as well as normal functioning of the adult organism, need to follow well-defined paths, and responses to environmental influences such as temperature, availability of food etc. must occur in a predictable manner. These responses require very fine control of complex cellular processes at the level of individual molecules. When this fine control breaks down, diseases such as cancer, degenerative disorders (e.g. Alzheimer's disease) and inflammatory conditions can result. Understanding these cellular and molecular processes in detail is important both to understand normal growth and development, and to provide us with insights into how serious diseases can be treated.Fibroblast growth factors (FGFs) are protein 'hormones' produced by certain cells to stimulate the growth of other cells involved in important processes such as the development of an embryo, the growth of new blood vessels and the repair and healing of wounds. FGF molecules bind to the outer parts of FGF receptors (FGFRs), which are proteins that span across the cell's protective outer membrane, and cause FGFR molecules to pair up. The parts of the receptor proteins that are inside the cell, known as kinase domains, are then close enough to activate one another through addition of phosphate 'chemical labels' that induce a change in the shape of the kinase domains from an inactive to an active conformation, causing the kinase domains to activate other proteins in the cell in a 'signalling cascade' that tells the cell to start dividing and proliferating. In turn, this process results in the formation of new tissues. The role of FGFs and FGFRs in formation of new blood vessels is also significant in cancer, where tumour cells often artificially elevate FGFR signalling within and between themselves as a way of securing a supply of nutrients and oxygen for further growth. Starving cancers of their new blood supply by inhibiting FGFR signalling is a promising avenue for treatment, and drug companies are currently developing new medicines that inhibit the activity of FGFRs.Although we understand some of the mechanisms by which the kinase domain of FGFR is activated from static 'snapshots' of the protein by X-ray crystallography, we still lack knowledge of how the flexibility of the kinase protein contributes to this role. Most proteins are not rigid, but need to flex to change their shape, or parts of their shape, in subtle ways to allow them to perform their functions in the cell. We will use an innovative combination of experimental methods including nuclear magnetic resonance spectroscopy (NMR), surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC), together with advanced computational methods, to understand the role of flexibility of the protein in the transition between inactive and active conformations. NMR is a particularly powerful method for investigating flexibility in protein function at the level of individual atoms or groups of atoms, and here we will combine experimental information from NMR with cutting-edge computational modelling of kinase motion to describe these movements in much more detail than has been previously achieved.By understanding the protein motions that govern FGFR kinase activity, we can understand better how FGFRs function in normal tissues and how they can malfunction in certain diseases such as cancers and developmental disorders. For example, mutated forms of FGFRs are found in many cancers. These contain amino acid changes that short-circuit the normal activation process and result in a kinase that is permanently switched 'on'. Our work will lead to enhanced understanding of how to design drugs that specifically inhibit these mutant forms of FGFR, leading ultimately to better treatments for cancers and developmental disorders.
细胞分裂、增殖、死亡和“回收”的方式必须以高度编程的方式进行非常仔细的调节。成人有机体的发育和成熟以及正常功能都需要遵循明确的路径,并且对温度、食物供应等环境影响的反应必须以可预测的方式发生。这些反应需要在单个分子水平上对复杂的细胞过程进行非常精细的控制。当这种精细控制被破坏时,就会导致癌症、退行性疾病(例如阿尔茨海默病)和炎症等疾病。详细了解这些细胞和分子过程对于了解正常生长和发育以及为我们提供如何治疗严重疾病的见解非常重要。成纤维细胞生长因子 (FGF) 是某些细胞产生的蛋白质“激素”,可刺激参与重要过程的其他细胞的生长,例如胚胎发育、新血管生长以及伤口修复和愈合。 FGF 分子与 FGF 受体 (FGFR) 的外部结合,FGFR 是跨越细胞保护性外膜的蛋白质,并导致 FGFR 分子配对。细胞内受体蛋白的部分(称为激酶结构域)足够接近,可以通过添加磷酸盐“化学标记”来激活彼此,从而诱导激酶结构域的形状从非活性变为活性。构象,导致激酶结构域以“信号级联”的形式激活细胞中的其他蛋白质,告诉细胞开始分裂和增殖。反过来,这个过程导致新组织的形成。 FGF 和 FGFR 在新血管形成中的作用在癌症中也很重要,肿瘤细胞经常人为地增强其内部和之间的 FGFR 信号传导,作为确保进一步生长所需的营养和氧气供应的一种方式。通过抑制 FGFR 信号传导来使癌症缺乏新的血液供应是一种有前途的治疗途径,制药公司目前正在开发抑制 FGFR 活性的新药物。尽管我们了解 FGFR 激酶结构域被激活的一些机制尽管通过 X 射线晶体学获得了蛋白质的静态“快照”,但我们仍然缺乏对激酶蛋白的灵活性如何发挥这一作用的了解。大多数蛋白质不是刚性的,而是需要弯曲以微妙地改变其形状或部分形状,以允许它们在细胞中发挥其功能。我们将采用创新的实验方法组合,包括核磁共振波谱(NMR)、表面等离子共振(SPR)和等温滴定量热法(ITC)以及先进的计算方法,以了解蛋白质的灵活性在转变中的作用介于非活性和活性构象之间。 NMR 是一种特别强大的方法,用于在单个原子或原子团水平上研究蛋白质功能的灵活性,在这里,我们将 NMR 的实验信息与激酶运动的尖端计算模型相结合,以更详细地描述这些运动通过了解控制 FGFR 激酶活性的蛋白质运动,我们可以更好地了解 FGFR 在正常组织中如何发挥作用,以及它们如何在某些疾病(如癌症和发育障碍)中发生故障。例如,在许多癌症中都发现了 FGFR 的突变形式。它们含有氨基酸变化,使正常激活过程短路并导致激酶永久“开启”。我们的工作将加深对如何设计专门抑制 FGFR 突变形式的药物的理解,最终导致更好的癌症和发育障碍治疗。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure, activation and dysregulation of fibroblast growth factor receptor kinases: perspectives for clinical targeting
  • DOI:
    10.1042/bst20180004
  • 发表时间:
    2018-12-17
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Farrell, Brendan;Breeze, Alexander L.
  • 通讯作者:
    Breeze, Alexander L.
Farseer-NMR: automatic treatment, analysis and plotting of large, multi-variable NMR data.
  • DOI:
    10.1007/s10858-018-0182-5
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Teixeira JMC;Skinner SP;Arbesú M;Breeze AL;Pons M
  • 通讯作者:
    Pons M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Breeze其他文献

Alexander Breeze的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Breeze', 18)}}的其他基金

Structures of full-length FGFR cancer fusions and disease mutants
全长 FGFR 癌症融合体和疾病突变体的结构
  • 批准号:
    MR/W000369/1
  • 财政年份:
    2022
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Research Grant
The chaperone cycle of fibroblast growth factor receptor kinases in molecular detail
成纤维细胞生长因子受体激酶的分子伴侣循环的分子细节
  • 批准号:
    BB/W008017/1
  • 财政年份:
    2022
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Research Grant

相似国自然基金

CAFs中GPBAR1促进肝外胆管癌FGFR2磷酸化和培米替尼耐药的分子机制
  • 批准号:
    82303324
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
WTAP/m6A/FGFR3轴在纤维软骨透明化治疗中的作用与机制研究
  • 批准号:
    82302689
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
FGF7/FGFR2自分泌途径诱导星形胶质细胞反应性活化在帕金森病中的作用及调节机制
  • 批准号:
    82373851
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
靶向调控Gremlin1经FGFR1/STAT3信号通路促进巨噬细胞胞葬对根尖周炎消退的影响及机制研究
  • 批准号:
    82301057
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
硫酸乙酰肝素通过FGF2/FGFR1信号转导调控小细胞外囊泡产生的机制研究
  • 批准号:
    32371331
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

The mechanisms driving brain oncogenesis by FGFR-TACC gene fusions
FGFR-TACC 基因融合驱动脑肿瘤发生的机制
  • 批准号:
    9265417
  • 财政年份:
    2014
  • 资助金额:
    $ 54.21万
  • 项目类别:
The mechanisms driving brain oncogenesis by FGFR-TACC gene fusions
FGFR-TACC 基因融合驱动脑肿瘤发生的机制
  • 批准号:
    8773917
  • 财政年份:
    2014
  • 资助金额:
    $ 54.21万
  • 项目类别:
The mechanisms driving brain oncogenesis by FGFR-TACC gene fusions
FGFR-TACC 基因融合驱动脑肿瘤发生的机制
  • 批准号:
    8884561
  • 财政年份:
    2014
  • 资助金额:
    $ 54.21万
  • 项目类别:
Study on molecular mechanisms of hepatitis C virus infection.
丙型肝炎病毒感染的分子机制研究。
  • 批准号:
    16017252
  • 财政年份:
    2004
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
ELUCID ATION OF MECHANISMS OF URIN ARY BLADDER CARCINOMAS ASSOCIATED WITH SCHISTOSOMIASIS IN EGYPT
埃及血吸虫病相关膀胱癌发病机制的阐明
  • 批准号:
    16406021
  • 财政年份:
    2004
  • 资助金额:
    $ 54.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了