Developing Computational Methods to Aid Infectious Disease Therapeutics Through Analysis of Protein Function Evolution

通过分析蛋白质功能进化开发计算方法来辅助传染病治疗

基本信息

项目摘要

The recent revolution in high throughput DNA sequencing, started by the Human Genome Project, has led to large collections of data on a diverse set of organisms. This notably includes the parasitic, bacterial and viral agents that cause infectious diseases, as well as the organisms that are responsible for disease transmission. The emergence of this data offers new and exciting opportunities to understand these disease-causing agents and to develop novel therapeutics.An outstanding and challenging problem is to understand the functions of the proteins encoded by these genomes. Time and resources limit the number whose function can be experimentally determined; therefore methods for predicting function are of paramount importance. Moreover, new methods are required when applied to infectious diseases due to the complex relationships between the host organism and the disease causing agent. These associations also have implications for assessing which drugs are suitable for use against infectious diseases and for the development of new therapeutics.An understanding of the complex biochemical relationships that will facilitate the identifying of new drug targets for infectious diseases requires bringing together a range of diverse biological information. The best method for achieving this is using a multidisciplinary approach interfacing biology, chemistry and computer science techniques. In collaboration with colleagues at the London School of Hygiene and Tropical Medicine, the European Bioinformatics Institute and University College London, I will develop a unique computational resource specifically to handle genomes associated with infectious diseases that:- brings together relationships between protein sequences and their molecular structures, putting them into an evolutionary context as well as establishing measures of similarity between the functions of these proteins.- uses the data captured to develop a new method to predict the function of proteins by defining rules bases on the systematic analysis of cases where changes in function occur between related proteins and determining the features of that change.From the outset of the project, the methods developed will be applied to specific problems in infectious disease research, combined with validating predictions in collaboration with experimental groups. I will start by addressing the key enzymes involved in new drug treatments for Chagas disease, the most important parasitic infection in the Americas, with the aim of providing a better understanding of drug-resistance mechanisms. Predictions and functional annotations of the Trypanosoma and Leishmania genomes, the causative agents of sleeping sickness/Chagas disease and Leishmaniasis respectively, will be made to test the methods and to gain insight into how well they can contribute to enhancing the annotations of these genomes. Insights gained from the application and validation process will be used to further enhance the methods developed, ultimately enabling them to be used on any infectious disease agent. The resource and methods developed will also be used to identify new drug targets and possible unintended interactions between the drug and other proteins that may result in side effects in patients. An immediate application will seek to add value to the results of high-throughput drug screens against schistosomes. This trematode worm causes the world's second most socio-economically devastating parasitic disease (highlighted by he World Health Organization). The aim will be to identify which protein(s) the drug(s) might be targeting, and to determine if there is potential for adverse interaction in the human host. The research will eventually be of use in a clinical setting, with the real possibility of helping fight the huge variety of infectious diseases suffered by millions.
最近由人类基因组计划发起的高通量 DNA 测序革命导致了关于不同生物体的大量数据收集。这尤其包括引起传染病的寄生虫、细菌和病毒,以及导致疾病传播的生物体。这些数据的出现为了解这些致病因子和开发新的治疗方法提供了令人兴奋的新机会。一个突出且具有挑战性的问题是了解这些基因组编码的蛋白质的功能。时间和资源限制了可以通过实验确定功能的数量;因此,预测功能的方法至关重要。此外,由于宿主生物体和致病因子之间的复杂关系,在应用于传染病时需要新的方法。这些关联对于评估哪些药物适合用于对抗传染病以及开发新疗法也具有重要意义。了解复杂的生化关系将有助于确定传染病的新药物靶点,需要汇集一系列不同的药物生物信息。实现这一目标的最佳方法是使用生物学、化学和计算机科学技术相结合的多学科方法。我将与伦敦卫生和热带医学学院、欧洲生物信息学研究所和伦敦大学学院的同事合作,开发一种独特的计算资源,专门用于处理与传染病相关的基因组,该资源: - 汇集蛋白质序列与其分子之间的关系结构,将它们置于进化背景中,并建立这些蛋白质功能之间相似性的衡量标准。-使用捕获的数据开发一种新方法,通过基于对发生变化的情况的系统分析来定义规则来预测蛋白质的功能在功能上发生在相关蛋白质之间确定这种变化的特征。从项目一开始,开发的方法将应用于传染病研究中的具体问题,并与实验组合作验证预测。我将首先讨论美洲最重要的寄生虫感染恰加斯病新药治疗中涉及的关键酶,目的是更好地了解耐药机制。将对锥虫和利什曼原虫基因组(分别是昏睡病/查加斯病和利什曼病的病原体)进行预测和功能注释,以测试这些方法并深入了解它们如何有助于增强这些基因组的注释。从应用和验证过程中获得的见解将用于进一步增强所开发的方法,最终使其能够用于任何传染病病原体。开发的资源和方法还将用于识别新的药物靶点以及药物与其他蛋白质之间可能导致患者副作用的意外相互作用。立即应用将寻求增加针对血吸虫的高通量药物筛选结果的价值。这种吸虫引起世界上第二大对社会经济破坏性最大的寄生虫病(世界卫生组织强调)。目的是确定药物可能针对哪些蛋白质,并确定在人类宿主中是否存在潜在的不良相互作用。这项研究最终将应用于临床,真正有可能帮助数百万人对抗各种各样的传染病。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complementary Sources of Protein Functional Information: The Far Side of GO.
蛋白质功能信息的补充来源:GO 的另一面。
Chopping and Changing: the Evolution of the Flavin-dependent Monooxygenases.
  • DOI:
    10.1016/j.jmb.2016.07.003
  • 发表时间:
    2016-07-31
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Mascotti ML;Juri Ayub M;Furnham N;Thornton JM;Laskowski RA
  • 通讯作者:
    Laskowski RA
Known Allergen Structures Predict Schistosoma mansoni IgE-Binding Antigens in Human Infection.
  • DOI:
    10.3389/fimmu.2015.00026
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Farnell EJ;Tyagi N;Ryan S;Chalmers IW;Pinot de Moira A;Jones FM;Wawrzyniak J;Fitzsimmons CM;Tukahebwa EM;Furnham N;Maizels RM;Dunne DW
  • 通讯作者:
    Dunne DW
The evolution of enzyme function in the isomerases.
  • DOI:
    10.1016/j.sbi.2014.06.002
  • 发表时间:
    2014-06
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Cuesta, Sergio Martinez;Furnham, Nicholas;Rahman, Syed Asad;Sillitoe, Ian;Thornton, Janet M.
  • 通讯作者:
    Thornton, Janet M.
Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies.
  • DOI:
    10.1016/j.jmb.2015.11.010
  • 发表时间:
    2016-01-29
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Furnham N;Dawson NL;Rahman SA;Thornton JM;Orengo CA
  • 通讯作者:
    Orengo CA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Furnham其他文献

WHAT CAN COMPARATIVE GENOMICS REVEAL ABOUT THE MECHANISMS OF PROTEIN FUNCTION EVOLUTION
比较基因组学可以揭示蛋白质功能进化机制的哪些内容
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Dawson;R. A. Studer;Nicholas Furnham;D. Lees;Sayoni Das;J. Thornton;C. Orengo
  • 通讯作者:
    C. Orengo
THE RAMACHANDRAN PLOT AND PROTEIN STRUCTURE VALIDATION
RAMACHANDRAN 图和蛋白质结构验证
  • DOI:
    10.1142/9789814449144_0005
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Laskowski;Nicholas Furnham;J. Thornton
  • 通讯作者:
    J. Thornton
Multiprotein Systems As Targets for Drug Discovery : Opportunities and Challenges
多蛋白系统作为药物发现的目标:机遇与挑战
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Blundell;O. Davies;D. Chirgadze;Nicholas Furnham;L. Pellegrini;B. L. Sibanda
  • 通讯作者:
    B. L. Sibanda
FunTree: advances in a resource for exploring and contextualising protein function evolution
FunTree:探索和背景化蛋白质功能进化的资源进展
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Sillitoe;Nicholas Furnham
  • 通讯作者:
    Nicholas Furnham
The NAD Binding Domain and the Short‐Chain Dehydrogenase/Reductase (SDR) Superfamily
NAD 结合域和短链脱氢酶/还原酶 (SDR) 超家族
  • DOI:
    10.1002/9781118743089.ch8
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicholas Furnham;Gemma L. Holliday;J. Thornton
  • 通讯作者:
    J. Thornton

Nicholas Furnham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Furnham', 18)}}的其他基金

Developing a new generation of tools for predicting novel AMR mutation profiles using generative AI
使用生成人工智能开发新一代工具来预测新型 AMR 突变谱
  • 批准号:
    BB/Z514305/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.28万
  • 项目类别:
    Research Grant
Improving The Longevity Of New Infectious Disease Therapeutics Using Machine Learning / Artificial Intelligence In Early Stage Drug Discovery
在早期药物发现中使用机器学习/人工智能来延长新传染病疗法的寿命
  • 批准号:
    MR/T000171/1
  • 财政年份:
    2019
  • 资助金额:
    $ 43.28万
  • 项目类别:
    Research Grant
New001 Building research capacity for schistosomiasis drug discovery & development through high-content imaging & structural molecular biology studies
New001 建设血吸虫病药物发现的研究能力
  • 批准号:
    MR/M026221/1
  • 财政年份:
    2015
  • 资助金额:
    $ 43.28万
  • 项目类别:
    Research Grant

相似国自然基金

顺层边坡变形调控新结构——让剪让压型锚拉桩的承载机理与计算方法
  • 批准号:
    52378327
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
计算奇异值分解和广义奇异值分解的Jacobi-Davidson型迭代方法
  • 批准号:
    12301485
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于机器学习和相图计算耦合方法的γ′相强化型高熵高温合金的加速设计及其性能研究
  • 批准号:
    52371007
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
隧道充填型防突涌结构渗流-侵蚀-崩溃失稳特征与安全厚度能耗计算方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
能量采集型边缘计算架构下的节能任务卸载与高能效资源分配方法研究
  • 批准号:
    61902336
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing computational methods to minimise social bias in healthcare AI
开发计算方法以尽量减少医疗保健人工智能中的社会偏见
  • 批准号:
    2868742
  • 财政年份:
    2023
  • 资助金额:
    $ 43.28万
  • 项目类别:
    Studentship
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
  • 批准号:
    10678562
  • 财政年份:
    2023
  • 资助金额:
    $ 43.28万
  • 项目类别:
Developing computational methods to identify of endogenous substrates of E3 ubiquitin ligases and molecular glue degraders
开发计算方法来鉴定 E3 泛素连接酶和分子胶降解剂的内源底物
  • 批准号:
    10678199
  • 财政年份:
    2023
  • 资助金额:
    $ 43.28万
  • 项目类别:
Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
  • 批准号:
    10739049
  • 财政年份:
    2023
  • 资助金额:
    $ 43.28万
  • 项目类别:
Developing a computational platform for induced-fit and chemogenetic drug design
开发诱导拟合和化学遗传学药物设计的计算平台
  • 批准号:
    10680745
  • 财政年份:
    2023
  • 资助金额:
    $ 43.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了