Mechanisms underlying synapse-specific clustering of GABAA receptors

GABAA 受体突触特异性聚集的机制

基本信息

  • 批准号:
    G0800498/1
  • 负责人:
  • 金额:
    $ 133.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

To recognise things around us, process information and respond in a useful, safe and socially acceptable way, the brain performs extremely complex computations. Our brains contain millions of nerve cells (neurones) which process information and transfer it to other neurones via synapses. Since there are many types of neurones, there are many different types of synapse. Even subtle changes at one type of synapse can produce behavioural, or emotional changes and contribute to neurological or psychiatric disease. This project focusses on inhibitory synapses which reduce activity in other neurones, blocking their responses to other inputs. They select precisely which information is processed and control inappropriate perceptions, responses and behaviour patterns. Many drugs affect their function, eg. anaesthetics, sedatives and anti-anxiety drugs, while changes at some of these synapses caused by changing hormone levels contribute to premenstrual tension, increased epileptic seizure susceptibility at some times of the month and to ?postpartum blues?. At each synapse, a minute, highly specialised region of the output fibre of one neurone comes very close to the surface of another making a functional connection. On each side of the synapse so formed, proteins cluster into highly specific, complex functional units. These synaptic proteins are highly specialised components. We know something of their structures, their interactions with each other as they control information transfer and that subtly different components are used by different types of synapse. What we do not yet understand is how each of them is selected and inserted at just the right place, or precisely how each combination of components leads to one set of distinctive functional properties. A first requirement for this level of precision is for two neurones, one on either side of the synapse, to recognise each other. Neurone A might receive inputs from twenty different types of neurones and might generate output onto twenty different types of other neurones. It must therefore construct its own half of each of these synapses with enormous precision using just the right components at each one. The first question to be answered is therefore - how does it recognise the neurone on the other side ? The sheer complexity has, until recently, precluded a deeper understanding. The tools needed to probe further are however, becoming available and with them, new insight into the mechanisms that underlie this precision. We will combine these tools in two parallel, novel and complementary experimental approaches to the problem.
为了识别我们周围的事物、处理信息并以有用、安全和社会可接受的方式做出反应,大脑会执行极其复杂的计算。我们的大脑包含数百万个神经细胞(神经元),它们处理信息并通过突触将其传输到其他神经元。由于神经元有多种类型,因此突触也有多种不同类型。即使一种突触的细微变化也会产生行为或情绪变化,并导致神经或精神疾病。该项目的重点是抑制性突触,它会减少其他神经元的活动,阻止它们对其他输入的反应。他们精确地选择要处理的信息并控制不适当的感知、反应和行为模式。许多药物会影响其功能,例如。麻醉剂、镇静剂和抗焦虑药物,而激素水平变化引起的某些突触变化会导致经前紧张、每月某些时候癫痫发作的易感性增加以及“产后忧郁症”。在每个突触处,一个神经元输出纤维的微小且高度专业化的区域非常靠近另一个神经元的表面,从而形成功能连接。在如此形成的突触的每一侧,蛋白质聚集成高度特异性、复杂的功能单元。这些突触蛋白是高度专业化的成分。我们了解它们的结构、它们控制信息传递时相互之间的相互作用,以及不同类型的突触使用的细微不同的组件。我们尚不了解的是如何选择它们中的每一个并将其插入到正确的位置,或者确切地说每种组件的组合如何产生一组独特的功能特性。这种精度水平的第一个要求是两个神经元(一个位于突触的两侧)能够相互识别。神经元 A 可以接收来自二十种不同类型的神经元的输入,并且可以向二十种不同类型的其他神经元生成输出。因此,它必须使用每个突触的正确组件以极高的精度构建自己的一半突触。因此,要回答的第一个问题是——它如何识别另一侧的神经元?直到最近,这种纯粹的复杂性还阻碍了更深入的理解。然而,进一步探索所需的工具正在变得可用,并且随之而来的是对支撑这种精度的机制的新见解。我们将把这些工具结合起来,采用两种并行的、新颖的、互补的实验方法来解决这个问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex Thomson其他文献

Risperidone for attention-deficit hyperactivity disorder in people with intellectual disabilities.
利培酮用于治疗智障人士的注意力缺陷多动障碍。
Amfetamine for attention deficit hyperactivity disorder in people with intellectual disabilities.
安非他明用于治疗智力障碍人士的注意力缺陷多动障碍。
Report e and Emotion Processing in the Infant Brain
报告婴儿大脑中的电子和情绪处理
  • DOI:
    10.1002/dev.21851
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    A. Blasi;E. Mercure;S. Lloyd;Alex Thomson;M. Brammer;D. Sauter;Q. Deeley;Gareth J. Barker;V. Renvall;S. Deoni;D. Gasston;S. Williams;Mark H. Johnson;Andrew Simmons;D. Murphy
  • 通讯作者:
    D. Murphy
Is there a common underlying mechanism for age-related decline in cortical thickness?
与年龄相关的皮质厚度下降是否存在共同的潜在机制?
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    C. Ecker;D. Ståhl;E. Daly;P. Johnston;Alex Thomson;D. Murphy
  • 通讯作者:
    D. Murphy
Mapping Infant Brain Myelination with Magnetic Resonance Imaging
用磁共振成像绘制婴儿脑髓鞘形成图
  • DOI:
    10.1523/jneurosci.2106-10.2011
  • 发表时间:
    2011-01-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Deoni;E. Mercure;A. Blasi;D. Gasston;Alex Thomson;Mark H. Johnson;Steven C. R. Williams;D. Murphy
  • 通讯作者:
    D. Murphy

Alex Thomson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex Thomson', 18)}}的其他基金

CAREER: Unconventional superconductivity and disordered criticality in two dimensions
职业:非常规超导性和二维无序临界性
  • 批准号:
    2341066
  • 财政年份:
    2024
  • 资助金额:
    $ 133.26万
  • 项目类别:
    Continuing Grant
Selective targeting of synapses to specific dendritic locations and their modulation by voltage-gated channels
突触选择性靶向特定树突位置及其通过电压门控通道的调制
  • 批准号:
    G1000629/1
  • 财政年份:
    2011
  • 资助金额:
    $ 133.26万
  • 项目类别:
    Research Grant

相似国自然基金

受体ChemR23通过ATF5调控成纤维细胞极化介导特发性肺纤维化的机制研究和潜在药靶鉴定
  • 批准号:
    82373875
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
长白山区泥炭地植物-微生物级联关系对土壤磷潜在可用性的生物调控机制
  • 批准号:
    42371097
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
玉米植株吐水中的农药残留形成机制及其潜在生态风险研究
  • 批准号:
    32372608
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
阿司匹林丁香酚酯促进高脂血症大鼠胆汁酸代谢的分子机制与潜在靶点挖掘
  • 批准号:
    32373071
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高维因子模型中潜在误差序列的统计推断问题
  • 批准号:
    12301330
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mechanisms Underlying Axonopathy in Hereditary Spastic Paraplegia
遗传性痉挛性截瘫轴突病的潜在机制
  • 批准号:
    10463959
  • 财政年份:
    2022
  • 资助金额:
    $ 133.26万
  • 项目类别:
Mechanisms Underlying Axonopathy in Hereditary Spastic Paraplegia
遗传性痉挛性截瘫轴突病的潜在机制
  • 批准号:
    10611493
  • 财政年份:
    2022
  • 资助金额:
    $ 133.26万
  • 项目类别:
Molecular and Cellular Mechanisms Underlying Activity Dependent Gene Regulation in Neurons
神经元活性依赖性基因调控的分子和细胞机制
  • 批准号:
    10469796
  • 财政年份:
    2021
  • 资助金额:
    $ 133.26万
  • 项目类别:
Neuronal and synaptic mechanisms underlying the anti-epileptic effects of cannabidiol
大麻二酚抗癫痫作用的神经元和突触机制
  • 批准号:
    413058
  • 财政年份:
    2019
  • 资助金额:
    $ 133.26万
  • 项目类别:
    Fellowship Programs
Molecular mechanisms underlying the choice between homeostasis and activity-dependent plasticity at the synapse
突触稳态和活动依赖性可塑性之间选择的分子机制
  • 批准号:
    10020797
  • 财政年份:
    2019
  • 资助金额:
    $ 133.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了