SBE-UKRI:A Novel Theory of Ordered Judgment Processes
SBE-UKRI:有序判断过程的新颖理论
基本信息
- 批准号:ES/Z000084/1
- 负责人:
- 金额:$ 45.53万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
OverviewThere are three core elements to decision making: judgment, preference, and choice (Fischhoff & Broomell, 2020). Judgments represent how people come to understand the outcomes associated with choices along with their probabilities of occurrence. This proposal focuses on how people form judgments by aggregating multiple pieces of evidence gathered from different information sources. Much of the literature on judgment has relied on linear models as the prominent theoretical basis for understanding such judgments (e.g., Broomell & Budescu, 2009; Dawes, 1971; Karelaia & Hogarth, 2008). We propose a new theory of ordered judgment that fuses psychological theory with operational and theoretical advances from computer science in the areas of data aggregation and artificial intelligence.Intellectual MeritWe propose to advance psychological theory beyond linear models by (1) leveraging computationally simple ordering processes with statistically desirable properties for information aggregation, (2) mimicking the relative nature of perception in judgment, and (3) seamlessly integrating this approach with linear theories previously used. Researchers have implicated ordering as a potential component of cognition but to date, lack the ability to empirically test for its presence. Our theory of ordered judgment will provide the first operational framework for empirical tests of the role of ordering in judgment and beyond. We will develop and test this novel theory through three research objectives. The first objective is to develop a predictive model of judgment based on preliminary work (Broomell & Wagner, 2023). Such a model will facilitate targeted experimentation to detect whether ordered judgment processes can account for human behavior. The second objective is to use lab experiments to understand the degree to which order-based processes naturally fit with judgment processes and can predict human behavior. These studies will reveal systematic and predictable behavior in how judgments react to momentary changes in context. The third objective is to develop methods for estimating the free parameters of the ordered judgment model from observed judgments. The development of such an estimation procedure will allow for a more detailed decomposition of judgments into stable and dynamic priorities that drive judgment. Additionally, such an estimation procedure would have implications for model fitting broadly in psychological and computer science work.Broader ImpactsWe anticipate that this theory integration will have impacts for both psychological and computer science research that go well beyond the intellectual merits. For psychology, our theory of ordered judgment has many implications for how to display data to facilitate accurate processing that will be useful for decision-support and human factors work in contexts ranging from graphical user interfaces to operating machinery. For computer science, we anticipate that this work will contribute to the crucial area of explainable artificial intelligence by articulating direct links between pervasive linear and non-linear aggregation processes and human reasoning. This can afford mechanisms to understand, evaluate and validate machine-learning driven decision-making approaches in critical applications such as security and defense, energy, and healthcare. Further, algorithmic implementations of the proposed theory hold the potential to offer efficient means of aggregating information in machine learning including neural networks, as alluded to in Kreinovich (2022). The work in this proposal will also serve to train doctoral students and postdoctoral reasearchers in interdisciplinary and internationally collaborative research leveraging mathematical, computational, and empirical methods. The results of this work will complement the PI and co-PI's teaching and instrunction at undergraduate and graduate levels in the US and the UK.
概述决策由三个核心要素组成:判断、偏好和选择(Fischhoff & Broomell,2020)。判断代表人们如何理解与选择相关的结果及其发生的概率。该提案的重点是人们如何通过汇总从不同信息来源收集的多个证据来形成判断。许多关于判断的文献都依赖线性模型作为理解此类判断的重要理论基础(例如,Broomell & Budescu, 2009; Dawes, 1971; Karelaia & Hogarth, 2008)。我们提出了一种新的有序判断理论,它将心理学理论与计算机科学在数据聚合和人工智能领域的操作和理论进步融合在一起。智力优点我们建议通过以下方式推进心理学理论超越线性模型:(1)利用计算简单的排序过程信息聚合的统计上理想的属性,(2)模仿判断中感知的相对性质,以及(3)将该方法与先前使用的线性理论无缝集成。研究人员认为排序是认知的潜在组成部分,但迄今为止,缺乏实证检验其存在的能力。我们的有序判断理论将为实证检验有序在判断及其他方面的作用提供第一个操作框架。我们将通过三个研究目标来开发和测试这一新颖的理论。第一个目标是根据前期工作开发一个预测判断模型(Broomell & Wagner,2023)。这样的模型将有助于有针对性的实验,以检测有序判断过程是否可以解释人类行为。第二个目标是利用实验室实验来了解基于订单的流程与判断流程的自然契合程度以及预测人类行为的程度。这些研究将揭示判断如何对环境的瞬时变化做出反应的系统性和可预测的行为。第三个目标是开发根据观察到的判断来估计有序判断模型的自由参数的方法。这种估计程序的开发将允许将判断更详细地分解为驱动判断的稳定和动态的优先级。此外,这样的估计程序将对心理学和计算机科学工作中广泛的模型拟合产生影响。更广泛的影响我们预计这种理论整合将对心理学和计算机科学研究产生远远超出智力价值的影响。对于心理学来说,我们的有序判断理论对于如何显示数据以促进准确处理有很多影响,这对于从图形用户界面到操作机器等环境中的决策支持和人为因素工作很有用。对于计算机科学,我们预计这项工作将通过阐明普遍的线性和非线性聚合过程与人类推理之间的直接联系,为可解释人工智能的关键领域做出贡献。这可以提供理解、评估和验证安全与国防、能源和医疗保健等关键应用中机器学习驱动的决策方法的机制。此外,正如 Kreinovich (2022) 中提到的,所提出的理论的算法实现有可能在包括神经网络在内的机器学习中提供有效的信息聚合方法。该提案中的工作还将有助于培训博士生和博士后研究人员,利用数学、计算和实证方法进行跨学科和国际合作研究。这项工作的成果将补充 PI 和 co-PI 在美国和英国的本科生和研究生水平的教学和指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Wagner其他文献
Towards data-driven environmental planning and policy design-leveraging fuzzy logic to operationalize a planning framework
迈向数据驱动的环境规划和政策设计——利用模糊逻辑来实施规划框架
- DOI:
10.1109/fuzz-ieee.2014.6891783 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Amir Pourabdollah;Christian Wagner;Simon Miller;Michael Smith;K. Wallace - 通讯作者:
K. Wallace
A Restricted Parametrized Model for Interval-Valued Regression
区间值回归的限制参数化模型
- DOI:
10.1109/fuzz52849.2023.10309686 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jingda Ying;Shaily Kabir;Christian Wagner - 通讯作者:
Christian Wagner
Capturing Individuals' Uncertainties-On Establishing the Validity of an Interval-Valued Survey Response Mode
捕捉个体的不确定性——论建立区间值调查响应模式的有效性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Zack Ellerby;Christian Wagner;S. Broomell - 通讯作者:
S. Broomell
Expert systems and creativity
专家系统和创造力
- DOI:
10.1007/978-3-642-86679-1_10 - 发表时间:
1987 - 期刊:
- 影响因子:0
- 作者:
K. MacCrimmon;Christian Wagner - 通讯作者:
Christian Wagner
On Comparing and Selecting Approaches to Model Interval-Valued Data as Fuzzy Sets
区间值数据模糊集建模方法的比较和选择
- DOI:
10.1109/fuzz-ieee.2019.8858993 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Josie McCulloch;Zack Ellerby;Christian Wagner - 通讯作者:
Christian Wagner
Christian Wagner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christian Wagner', 18)}}的其他基金
Leveraging the Multi-Stakeholder Nature of Cyber Security
利用网络安全的多利益相关者性质
- 批准号:
EP/P011918/1 - 财政年份:2017
- 资助金额:
$ 45.53万 - 项目类别:
Research Grant
Digital Catapult Fellowship Programme
数字弹射器奖学金计划
- 批准号:
EP/M029263/1 - 财政年份:2015
- 资助金额:
$ 45.53万 - 项目类别:
Research Grant
Towards managing risk from climate change through comprehensive, inclusive and resilient UK infrastructure planning
通过全面、包容和有弹性的英国基础设施规划来管理气候变化风险
- 批准号:
NE/M008401/1 - 财政年份:2014
- 资助金额:
$ 45.53万 - 项目类别:
Research Grant
Towards Data-Driven Environmental Policy Design
迈向数据驱动的环境政策设计
- 批准号:
EP/K012479/1 - 财政年份:2013
- 资助金额:
$ 45.53万 - 项目类别:
Research Grant
Automotive 2020 Scholarship Program
汽车2020年奖学金计划
- 批准号:
0220554 - 财政年份:2003
- 资助金额:
$ 45.53万 - 项目类别:
Standard Grant
Improving Manufacturing with Artificial Intelligence Techniques
利用人工智能技术改进制造
- 批准号:
9251110 - 财政年份:1992
- 资助金额:
$ 45.53万 - 项目类别:
Standard Grant
On the Development of Alternatives: A Human - Computer System
论替代方案的开发:人机系统
- 批准号:
9016305 - 财政年份:1991
- 资助金额:
$ 45.53万 - 项目类别:
Continuing Grant
相似海外基金
SBE-UKRI: A Novel Theory of Ordered Judgment Processes
SBE-UKRI:有序判断过程的新颖理论
- 批准号:
2343580 - 财政年份:2024
- 资助金额:
$ 45.53万 - 项目类别:
Continuing Grant
UKRI-Norway: Figuring Out how to Reconstruct Common Era forcing of climate by VOLcanoes with novel data and modelling approaches (FORCE-VOL)
UKRI-挪威:弄清楚如何利用新颖的数据和建模方法重建共同时代火山对气候的强迫(FORCE-VOL)
- 批准号:
NE/Y001044/1 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Research Grant
UKRI-Norway: Figuring Out how to Reconstruct Common Era forcing of climate by VOLcanoes with novel data and modelling approaches (FORCE-VOL)
UKRI-挪威:弄清楚如何利用新颖的数据和建模方法重建共同时代火山对气候的强迫(FORCE-VOL)
- 批准号:
NE/Y001028/1 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Research Grant
Collaborative Research: SitS NSF UKRI: Decoding Nitrogen Dynamics in Soil through Novel Integration of in-situ Wireless Soil Sensors with Numerical Modeling
合作研究:SitS NSF UKRI:通过原位无线土壤传感器与数值建模的新颖集成解码土壤中的氮动态
- 批准号:
1935599 - 财政年份:2020
- 资助金额:
$ 45.53万 - 项目类别:
Standard Grant
Collaborative Research: SitS NSF UKRI: Decoding Nitrogen Dynamics in Soil through Novel Integration of in-situ Wireless Soil Sensors with Numerical Modeling
合作研究:SitS NSF UKRI:通过原位无线土壤传感器与数值建模的新颖集成解码土壤中的氮动态
- 批准号:
1935578 - 财政年份:2020
- 资助金额:
$ 45.53万 - 项目类别:
Standard Grant