Quantum digital twins based on hardware-tailored tensor networks for computing quantum dynamics
基于硬件定制张量网络的量子数字孪生,用于计算量子动力学
基本信息
- 批准号:EP/Y005007/1
- 负责人:
- 金额:$ 38.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum computing offers a promise to solve problems that cannot be addressed by classical devices, and an early access to quantum computers is vital for UK national security. The ability to solve complex problems with quantum computers relies on optimising both the hardware (quantum devices) and the software (quantum algorithms). In this project, we will design the tools for improving the quantum software, which can largely save required resources for state preparation and simulation of dynamics. We call these tools the quantum digital twins - specific programmable models that help representing quantum devices in the most efficient way, and thus enabling their optimisation.Quantum computing (QC) offers a distinct paradigm for performing calculations. Unlike classical computers that operate with bits (taking binary values 0 or 1), quantum devices rely on two-level quantum systems - qubits - that are described by states |0> and |1> that can be put in a superposition. The collection of N qubits can be efficiently evolved on specialised hardware - quantum computers - thus processing information encoded in a quantum form. Classical processing of the same amount of information will require manipulating 2^N complex numbers, a task that becomes impossible already at the size of fifty qubits. We know that in the future quantum computing can exponentially speed up factoring (having a huge impact on cryptography) and help with areas such as simulating materials and chemicals at a scale impossible before (promoting substantial steps towards green energy and sustainability).Quantum hardware is developed by various industrial and academic institutions worldwide. Qubit counts grow every year, and this makes community hopeful for achieving a practical quantum advantage in the near term. Yet, the current level of noise does not allow for running circuits of sufficient depth. Specifically designed quantum software may help to alleviate this problem if tailored algorithms are developed. This challenge calls for imaginative approaches that account for hardware capabilities and limitations.To harness benefits from near-term quantum computing, UK needs to channel an effort on developing software tools that enable the scalable prototyping of quantum algorithms and allow for benchmarking quantum devices at the increased scale. We propose to do this by designing quantum digital twins as efficient tensor network emulators of quantum devices.This project is the collaboration between quantum researchers at the University of Exeter and the National Physical Laboratory. It is built on the three pillars, each representing an open challenge for advancing quantum software and applications: 1) developing efficient tools for quantum state preparation and quantum circuit emulation; 2) developing quantum digital twins of the dynamics; 3) benchmarking quantum algorithms for solving computationally-hard problems in material science.To tackle these challenges we will address three objectives:1. We will develop compact tensor network representations for low energy states of relevant quantum Hamiltonians, and translate these tensor networks into low-depth quantum circuits for efficient initial quantum state preparation.2. We will develop scalable tensor network-based emulators of quantum dynamics as quantum digital twins, taking advantage of the knowledge of the hardware-specific Hamiltonians.3. We will benchmark the scalability of quantum digital twins for emulating quantum devices in materials simulations, and determine the threshold for potential quantum advantage.As a result of the project, we will have the efficient tools that enable the scalable prototyping and improving of quantum simulation, thus maximizing the performance of quantum computers at increasing scale.
量子计算有望解决传统设备无法解决的问题,尽早使用量子计算机对于英国国家安全至关重要。使用量子计算机解决复杂问题的能力依赖于硬件(量子设备)和软件(量子算法)的优化。在这个项目中,我们将设计改进量子软件的工具,这可以很大程度上节省状态准备和动力学模拟所需的资源。我们将这些工具称为量子数字孪生——特定的可编程模型,有助于以最有效的方式表示量子设备,从而实现其优化。量子计算 (QC) 提供了执行计算的独特范例。与使用位操作的经典计算机(采用二进制值 0 或 1)不同,量子设备依赖于两级量子系统 - 量子位 - 由可以叠加的状态 |0> 和 |1> 描述。 N 个量子位的集合可以在专用硬件(量子计算机)上有效地演化,从而处理以量子形式编码的信息。同等信息量的经典处理将需要处理 2^N 个复数,而在 50 个量子位的大小下,这项任务就变得不可能了。我们知道,未来量子计算可以成倍地加速因式分解(对密码学产生巨大影响),并以以前不可能的规模模拟材料和化学品等领域(推动向绿色能源和可持续发展迈出实质性步伐)。量子硬件是由全球各个工业和学术机构开发。量子比特数量每年都在增长,这使得社区对在短期内实现实际的量子优势充满希望。然而,当前的噪声水平不允许运行足够深度的电路。如果开发出定制的算法,专门设计的量子软件可能有助于缓解这个问题。这一挑战需要考虑到硬件功能和限制的富有想象力的方法。为了利用近期量子计算的优势,英国需要努力开发软件工具,以实现量子算法的可扩展原型设计,并允许在量子设备上进行基准测试。规模扩大。我们建议通过设计量子数字孪生作为量子设备的高效张量网络模拟器来实现这一目标。该项目是埃克塞特大学和国家物理实验室的量子研究人员之间的合作。它建立在三大支柱之上,每一个支柱都代表着推进量子软件和应用的公开挑战:1)开发用于量子态准备和量子电路仿真的有效工具; 2)开发动力学的量子数字孪生体; 3)对量子算法进行基准测试,以解决材料科学中的计算难题。为了应对这些挑战,我们将实现三个目标:1。我们将为相关量子哈密顿量的低能态开发紧凑的张量网络表示,并将这些张量网络转化为低深度的量子电路,以实现有效的初始量子态准备。 2.我们将利用特定于硬件的哈密顿量的知识,开发可扩展的基于张量网络的量子动力学模拟器作为量子数字孪生。3。我们将对量子数字孪生的可扩展性进行基准测试,以在材料模拟中模拟量子器件,并确定潜在量子优势的阈值。该项目的结果是,我们将拥有有效的工具,能够实现可扩展的原型设计和量子模拟的改进,从而在规模不断扩大的情况下最大限度地提高量子计算机的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oleksandr Kyriienko其他文献
Beyond the Buzz: Strategic Paths for Enabling Useful NISQ Applications
超越喧嚣:启用有用的 NISQ 应用程序的战略路径
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
P. R. Hegde;Oleksandr Kyriienko;H. Heimonen;Panagiotis Tolias;Gilbert Netzer;Panagiotis Barkoutsos;Ricardo Vinuesa;Ivy Peng;Stefano Markidis - 通讯作者:
Stefano Markidis
Geometric quantum machine learning of BQPA protocols and latent graph classifiers
BQPA 协议和潜在图分类器的几何量子机器学习
- DOI:
10.48550/arxiv.2402.03871 - 发表时间:
2024-02-06 - 期刊:
- 影响因子:0
- 作者:
Chukwudubem Umeano;V. Elfving;Oleksandr Kyriienko - 通讯作者:
Oleksandr Kyriienko
Multidimensional Quantum Generative Modeling by Quantum Hartley Transform
通过量子 Hartley 变换进行多维量子生成建模
- DOI:
- 发表时间:
2024-06-06 - 期刊:
- 影响因子:0
- 作者:
Hsin;V. Elfving;Oleksandr Kyriienko - 通讯作者:
Oleksandr Kyriienko
Quantum topological data analysis via the estimation of the density of states
通过状态密度估计进行量子拓扑数据分析
- DOI:
- 发表时间:
2023-12-12 - 期刊:
- 影响因子:0
- 作者:
Stefano Scali;Chukwudubem Umeano;Oleksandr Kyriienko - 通讯作者:
Oleksandr Kyriienko
The topology of data hides in quantum thermal states
数据的拓扑隐藏在量子热态中
- DOI:
- 发表时间:
2024-02-23 - 期刊:
- 影响因子:0
- 作者:
Stefano Scali;Chukwudubem Umeano;Oleksandr Kyriienko - 通讯作者:
Oleksandr Kyriienko
Oleksandr Kyriienko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oleksandr Kyriienko', 18)}}的其他基金
2D polaritons for optoelectronic devices and networks
用于光电器件和网络的二维极化子
- 批准号:
EP/X017222/1 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Research Grant
Quantum nonlinear optics with 2D materials
二维材料的量子非线性光学
- 批准号:
EP/V00171X/1 - 财政年份:2021
- 资助金额:
$ 38.78万 - 项目类别:
Research Grant
相似国自然基金
基于数字孪生的工业物联网资源自演进智能调度研究
- 批准号:62302301
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
检监测数据融合驱动的混凝土斜拉桥既有裂缝智能诊断数字孪生系统研究
- 批准号:52378288
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
数字孪生驱动的空天飞行器热防护结构动响应监测方法研究
- 批准号:52302514
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数字化转型下人机融合领导风格对团队绩效的影响机制研究
- 批准号:72372156
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
面向老龄人群数字健康照护的因果优化方法和应用研究
- 批准号:82304269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 38.78万 - 项目类别:
Standard Grant
COMET: Communications Enabled, AI/ML based Digital Twins for Smart city Logistics and Last Mile applications
COMET:支持通信、基于 AI/ML 的数字孪生,用于智慧城市物流和最后一英里应用
- 批准号:
10099265 - 财政年份:2024
- 资助金额:
$ 38.78万 - 项目类别:
Collaborative R&D
Empowering Next-Generation Spatial Digital Twins with Linked Spatial Data
利用链接的空间数据赋能下一代空间数字孪生
- 批准号:
DP240101006 - 财政年份:2024
- 资助金额:
$ 38.78万 - 项目类别:
Discovery Projects
Trustworthy and Ethical Assurance of Digital Twins (TEA-DT)
数字孪生的可信和道德保证 (TEA-DT)
- 批准号:
AH/Z505663/1 - 财政年份:2024
- 资助金额:
$ 38.78万 - 项目类别:
Research Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 38.78万 - 项目类别:
Standard Grant