High-Density Active Silicon Carbide Power Electronics: Enabling Responsive Power Conversion

高密度活性碳化硅电力电子器件:实现响应式电力转换

基本信息

  • 批准号:
    EP/Y000307/1
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

In pursuit of Carbon net-zero, it is imperative to develop technologies that enhance the efficiency and reliability of energy conversion, e.g. in drivetrain and rapid chargers of electric vehicles (EVs). To put this into context, the larger battery size (i.e. 350 kWh at 800 V & 440 A for higher consumption) and long-range driving nature of heavy-duty EVs mandate ubiquitous access to extremely fast chargers at 350 kW for financially justifiable charging delays. These are proposed to directly connect to 11 kV feeders by high-frequency solid-state-transformers (SST), needing energy-dense fast power modules. Literature indicates that the emergence of wide-bandgap semiconductor devices, especially Silicon Carbide devices, enables us to deliver ultra-efficient reliable converters that deliver the next leap.Wide-bandgap power electronics is, however, currently being slowed down due to issues such as high dV/dt, common-mode interference and degradations. This means the full potential of wide-bandgap devices is still far from being obtained. The IEEE International Technology Roadmap for Wide-Bandgap Power Semiconductors (ITRW) has indicated that to unlock this potential, these limitations must be broken-through by 2028. As the UK is leading toward automotive electrification with a ban on the sale of new petrol & diesel engines by 2030, the UK needs to develop this technology locally, and earlier than this, to remain a global competitor in 'driving the electric revolution'.Research on SiC devices has shown that they are prone to progressive degradations, with a 'memory' effect that leads to a drift of electrothermal parameters away from the datasheet values. This can lead to failures in long-term operations. Nevertheless, it is demonstrated that under certain conditions the devices can recover to close to the initial state, if the devices are subjected to specific electrical and thermal conditions. This proposal, in a nutshell, aims to take advantage of these findings to explore ways of controlling and reversing degradation in devices using non-contact sensors which feed information to smart, active gate drivers, which, in turn, control the recovery of the power devices.To this end, this New Investigator Award project aims to make the power electronic core of these power converters responsive to operating conditions and functional degradations. This will be achieved by closing the loop between detection of change in SiC devices and how devices are controlled via their gates. This would permit SiC devices to be operated safely at higher switching speeds and thus efficiencies, than current datasheet limits allow. This is because datasheet nominal values are conservative in order to take every situation into account, whereas new situational awareness will allow these limits to be safely exceeded when appropriate. This is so important, particularly in the case of SiC power conversion, because whilst it is successfully taking over from silicon, it is also known that the potential performance of SiC is over an order higher than today's systems. Being able to safely break through these nominal limitations will reduce converter volume in cars and aircraft 2x or more, and bring a similar reduction in power loss in wind and solar power generation. Perhaps most importantly, it will reduce operational risk, by changing to safer driving modes as devices age or overheat. For example, this will reduce the cost of offshore wind power generation by generating more power at a lower risk of damage, and allow maintenance to be pre-empted. In the future, responsive power conversion with awareness of operating conditions and degradation could allow electric vehicles to detect the onset of drive failure, and activate a safe mode to get people home.
为了实现碳净零,必须开发提高能源转换效率和可靠性的技术,例如电动汽车 (EV) 的传动系统和快速充电器。考虑到这一点,较大的电池尺寸(即 350 kWh,800 V 和 440 A,功耗更高)和重型电动汽车的长距离行驶特性要求无处不在的 350 kW 极快充电器,以实现经济上合理的充电延迟。这些建议通过高频固态变压器(SST)直接连接到 11 kV 馈线,需要能量密集的快速功率模块。文献表明,宽带隙半导体器件,特别是碳化硅器件的出现,使我们能够提供超高效可靠的转换器,从而实现下一次飞跃。然而,由于以下问题,宽带隙电力电子技术目前正在放缓高 dV/dt、共模干扰和性能下降。这意味着宽带隙器件的全部潜力仍远未得到充分发挥。 IEEE 国际宽带隙功率半导体技术路线图 (ITRW) 表明,要释放这一潜力,必须在 2028 年之前突破这些限制。随着英国禁止销售新汽油和汽车,正在引领汽车电气化。到 2030 年,英国需要在本地开发这项技术,并在此之前,以保持“推动电动革命”的全球竞争者的地位。对 SiC 器件的研究表明,它们易于进步退化,具有“记忆”效应,导致电热参数偏离数据表值。这可能会导致长期操作失败。然而,事实证明,在某些条件下,如果器件受到特定的电和热条件的影响,器件可以恢复到接近初始状态。简而言之,该提案旨在利用这些发现来探索使用非接触式传感器控制和逆转设备退化的方法,这些传感器将信息提供给智能有源栅极驱动器,进而控制功率的恢复为此,这个新研究者奖项目旨在使这些功率转换器的电力电子核心能够响应工作条件和功能退化。这将通过在 SiC 器件的变化检测和如何通过栅极控制器件之间建立闭环来实现。这将使 SiC 器件能够以比当前数据表限制更高的开关速度和效率安全运行。这是因为数据表标称值是保守的,以便考虑到每种情况,而新的态势感知将允许在适当的时候安全地超过这些限制。这非常重要,特别是在 SiC 功率转换的情况下,因为虽然它成功地取代了硅,但众所周知,SiC 的潜在性能比当今的系统高出一个数量级。能够安全地突破这些标称限制将使汽车和飞机中的转换器体积减少两倍或更多,并带来风能和太阳能发电的功率损耗类似的减少。也许最重要的是,随着设备老化或过热,它将改变为更安全的驾驶模式,从而降低运营风险。例如,这将通过以更低的损坏风险产生更多电力来降低海上风力发电的成本,并允许预先进行维护。未来,具有对运行条件和性能退化的感知能力的响应式电源转换可以让电动汽车检测到驱动故障的发生,并激活安全模式让人们回家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saeed Jahdi其他文献

Saeed Jahdi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

最优区分视角下内外部社会责任不一致的影响因素及其对企业的积极影响研究
  • 批准号:
    72302070
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于大学生积极心理促进的校园恢复性环境循证建构研究
  • 批准号:
    52378014
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
驻高海拔地区铁路建设工程项目员工的Flow体验、国家认同与心理韧性:积极环境心理学视角
  • 批准号:
    72271205
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
喜心禅通过多种积极情绪促进心理健康:干预与神经机制的整合研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
积极情绪提升认知训练效果:基于对老年人记忆的影响与路径探索
  • 批准号:
    32271121
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Optimization of Flexible Neural Probe Arrays for Multi-Region Recordings in Rodents and Nonhuman Primates
用于啮齿动物和非人类灵长类动物多区域记录的柔性神经探针阵列的优化
  • 批准号:
    10401221
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Improving DFT Modeling of EPR Data for Small Molecule Organic Photovoltaics
改进小分子有机光伏 EPR 数据的 DFT 建模
  • 批准号:
    9533663
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
Improving DFT Modeling of EPR Data for Small Molecule Organic Photovoltaics
改进小分子有机光伏 EPR 数据的 DFT 建模
  • 批准号:
    9277827
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
Bio-active Nanoparticles and the stimulation of autophagy for improved bone mass
生物活性纳米颗粒和刺激自噬以改善骨量
  • 批准号:
    8634211
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
Bio-active Nanoparticles and the stimulation of autophagy for improved bone mass
生物活性纳米颗粒和刺激自噬以改善骨量
  • 批准号:
    9280823
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了