Artificial intelligence coupled to automation for accelerated medicine design

人工智能与自动化相结合,加速药物设计

基本信息

  • 批准号:
    EP/Z533038/1
  • 负责人:
  • 金额:
    $ 19.11万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Artificial intelligence (AI) is revolutionizing our world by predicting future behaviours from large datasets. Recent excitement has grown around AI that requires small (<100) datasets, guiding the investigation of vital areas like pharmaceuticals. "Active learning" (AL) techniques use experiment outcomes to make recommendations for new experiment designs based on areas of the state space where it is less certain of its predictions. The results of these predictions feed into the model for continual improvement. Bayesian Optimisation is being explored for material discovery tasks, however this process is limited in that models attempt to find the optimal material given a target profile, compared to AL, which focusses on building a robust and interpretable model. This project will aim to develop an inexpensive robot formulator with AL-driven decision-making to accelerate medicine manufacture. It is envisioned that a robot that is able to perform routine laboratory tasks, such as handling liquids and taking analytical measurements, could be guided by a regression AL algorithm such that it not only performs tasks, but learns and executes the next logical step, ultimately developing high quality, safe, and efficacious liquid medicines. Integrating AI, robotics, and automated analysis is an enormous challenge, however the outcomes could be phenomenal. Robotic formulators could drive drug candidates through pharmaceutical bottlenecks rapidly with quality data, using a large design space, with little waste. This will be demonstrated in the project by challenging the robot with complex drugs which are likely to be core medicines of the future. It is envisioned that this approach will be able to identify complex and unintuitive combinations of drug and additives which traditional formulation approaches would not.It is anticipated that the project will have step-wise impact on future innovations. The robot formulator is inexpensive in comparison to current robotic formulation streams (such as those used in the Materials Innovation Factory) and the algorithms can be run on standard PCs using open-source software. Thus, the approach can be adopted in lower-resource environments for local priority medicines. The focus on algorithm integration timely to make best use of recent regression AL principles, and the blueprint proposed amenable to future developments in AI. In order to achieve the ambitious aims of this project, the following process will be followed. Firstly, an inexpensive liquid-handling robot (£9k, owned by the PI) will be instructed to develop mixtures of drug and additive (in solution) with a single read-out (e.g. absorbance). An Xarm 5 robotic arm will be interfaced with the liquid-handling robot to allow the formulations to be transferred into analytical instruments. A regression AL algorithm will then analyse which conditions led to solubility and generate predictions on formulations with improved solubility that the robot will automatically investigate. This process will be optimised and evaluated to demonstrate that the robot is "learning" how to make these medicines better. The study will then move on to exploration of multiple product attributes at the same time, akin to "real world" medicine formulation. The project will match processes the robot performs to those used by industry, to ensure the findings are translatable, guided by collaboration with Bayer. Furthermore, the technology will be designed to use industry-standard software, QBDvision, for high-quality handling and reporting of data. Thus, the robot scientist also provides immaculate reporting of results that are needed for approval of new medicines.
人工智能 (AI) 通过从大型数据集预测未来行为,正在彻底改变我们的世界。最近,人们对需要小型(<100)数据集的人工智能越来越感兴趣,它可以指导“主动学习”(AL)技术等重要领域的研究。实验结果,根据其预测不太确定的状态空间区域提出新实验设计的建议。这些预测的结果将输入到模型中,以实现材料发现任务的持续改进,然而,与 AL 相比,该过程的局限性在于模型试图在给定目标轮廓的情况下找到最佳材料,而 AL 侧重于构建稳健且可解释的模型,该项目旨在开发具有 AL 驱动决策的廉价机器人配方师。可以预见,能够执行日常实验室任务(例如处理液体和进行分析测量)的机器人可以由回归 AL 算法引导,这样它不仅可以执行任务,还可以学习和执行任务。下一个合乎逻辑的步骤,最终开发高质量,集成人工智能、机器人技术和自动化分析是一项巨大的挑战,但机器人配方师可以利用大量的设计空间,利用高质量的数据,快速突破制药瓶颈,并且几乎不会造成浪费。该项目将通过使用可能成为未来核心药物的复杂药物来挑战机器人来证明这一点,预计这种方法将能够识别传统配方方法所无法识别的复杂且不直观的药物和添加剂组合。预计该项目将对未来的创新产生逐步影响,与当前的机器人配方流程(例如材料创新工厂中使用的流程)相比,机器人配方师的成本较低,并且算法可以在标准 PC 上运行。因此,该方法可以在资源匮乏的环境中用于本地优先药物。及时关注算法集成,以充分利用最新的回归 AL 原理,并提出适合人工智能未来发展的蓝图。为了实现雄心勃勃的目标在该项目中,将遵循以下过程:首先,将指示一个廉价的液体处理机器人(9000 英镑,由 PI 拥有)开发具有单一读数(例如吸光度)的药物和添加剂(在溶液中)的混合物。 Xarm 5 机械臂将与液体处理机器人连接,以便将配方转移到分析仪器中,然后回归 AL 算法将分析哪些条件会导致溶解度并生成改进的配方预测。机器人将自动研究溶解度,该过程将被优化和评估,以证明机器人正在“学习”如何使这些药物变得更好,然后该研究将继续探索多种产品属性,类似于。该项目将在与拜​​耳的合作指导下,将机器人执行的流程与行业使用的流程进行匹配,以确保研究结果可转化。此外,该技术将设计为使用行业标准软件 QBDvision。用于高质量处理和因此,机器人科学家还可以提供批准新药所需的完美结果报告。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Cook其他文献

THE EARLY HISTORY OF CHINESE COMMUNIST PARTY
中国共产党的早期历史
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masahito Ando (Margaret Procter;Michael Cook;Caroline Williams;eds.);ISHIKAWAYOSHIHIRO
  • 通讯作者:
    ISHIKAWAYOSHIHIRO
Reading graphically: Examining the effects of graphic novels on the reading comprehension of high school students
图画阅读:检验图画小说对高中生阅读理解的影响
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Cook
  • 通讯作者:
    Michael Cook
AI-based Game Design Patterns
基于人工智能的游戏设计模式
Wevva: Democratising Game Design
Wevva:民主化游戏设计
Mechanic Miner: Reflection-Driven Game Mechanic Discovery and Level Design
Mechanic Miner:反射驱动的游戏机制发现和关卡设计
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Cook;S. Colton;Azalea Raad;J. Gow
  • 通讯作者:
    J. Gow

Michael Cook的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Cook', 18)}}的其他基金

Engineering thermoresponsive materials via supracolloidal assembly in polymer-stabilised emulsions.
通过聚合物稳定乳液中的超胶体组装来工程热响应材料。
  • 批准号:
    EP/T00813X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 19.11万
  • 项目类别:
    Research Grant

相似国自然基金

染色质重塑子对儿童智力发育障碍的机制研究及诊断标志物探索
  • 批准号:
    82330049
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
基于轴突密度纵向分析智力障碍患儿语言功能康复中双流语言网络可塑性机制的MRI-NODDI研究
  • 批准号:
    82360337
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
KCNQ2基因变异导致智力障碍的致病机制研究
  • 批准号:
    82301347
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新烟碱类农药通过肠道菌群影响儿童智力发育的机制研究
  • 批准号:
    22366007
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
ARID1B突变引起H3K4me3水平异常导致智力障碍的机制与治疗研究
  • 批准号:
    82302082
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
  • 批准号:
    10723802
  • 财政年份:
    2023
  • 资助金额:
    $ 19.11万
  • 项目类别:
Sequential Modeling for Prediction of Periodontal Diseases: an intra-Collaborative Practice-based Research study (ICPRS)
牙周病预测的序列模型:基于内部协作实践的研究 (ICPRS)
  • 批准号:
    10755010
  • 财政年份:
    2023
  • 资助金额:
    $ 19.11万
  • 项目类别:
Research Project 2: Neuroblastoma
研究项目2:神经母细胞瘤
  • 批准号:
    10712294
  • 财政年份:
    2023
  • 资助金额:
    $ 19.11万
  • 项目类别:
Artificial Intelligence-based decision support for chemotherapy-response assessment in Brain Tumors
基于人工智能的脑肿瘤化疗反应评估决策支持
  • 批准号:
    10589512
  • 财政年份:
    2023
  • 资助金额:
    $ 19.11万
  • 项目类别:
SCH: Simulation Optimization of Cardiac Surgical Planning
SCH:心脏手术计划的模拟优化
  • 批准号:
    10816654
  • 财政年份:
    2023
  • 资助金额:
    $ 19.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了