Artificial intelligence coupled to automation for accelerated medicine design

人工智能与自动化相结合,加速药物设计

基本信息

  • 批准号:
    EP/Z533038/1
  • 负责人:
  • 金额:
    $ 19.11万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Artificial intelligence (AI) is revolutionizing our world by predicting future behaviours from large datasets. Recent excitement has grown around AI that requires small (<100) datasets, guiding the investigation of vital areas like pharmaceuticals. "Active learning" (AL) techniques use experiment outcomes to make recommendations for new experiment designs based on areas of the state space where it is less certain of its predictions. The results of these predictions feed into the model for continual improvement. Bayesian Optimisation is being explored for material discovery tasks, however this process is limited in that models attempt to find the optimal material given a target profile, compared to AL, which focusses on building a robust and interpretable model. This project will aim to develop an inexpensive robot formulator with AL-driven decision-making to accelerate medicine manufacture. It is envisioned that a robot that is able to perform routine laboratory tasks, such as handling liquids and taking analytical measurements, could be guided by a regression AL algorithm such that it not only performs tasks, but learns and executes the next logical step, ultimately developing high quality, safe, and efficacious liquid medicines. Integrating AI, robotics, and automated analysis is an enormous challenge, however the outcomes could be phenomenal. Robotic formulators could drive drug candidates through pharmaceutical bottlenecks rapidly with quality data, using a large design space, with little waste. This will be demonstrated in the project by challenging the robot with complex drugs which are likely to be core medicines of the future. It is envisioned that this approach will be able to identify complex and unintuitive combinations of drug and additives which traditional formulation approaches would not.It is anticipated that the project will have step-wise impact on future innovations. The robot formulator is inexpensive in comparison to current robotic formulation streams (such as those used in the Materials Innovation Factory) and the algorithms can be run on standard PCs using open-source software. Thus, the approach can be adopted in lower-resource environments for local priority medicines. The focus on algorithm integration timely to make best use of recent regression AL principles, and the blueprint proposed amenable to future developments in AI. In order to achieve the ambitious aims of this project, the following process will be followed. Firstly, an inexpensive liquid-handling robot (£9k, owned by the PI) will be instructed to develop mixtures of drug and additive (in solution) with a single read-out (e.g. absorbance). An Xarm 5 robotic arm will be interfaced with the liquid-handling robot to allow the formulations to be transferred into analytical instruments. A regression AL algorithm will then analyse which conditions led to solubility and generate predictions on formulations with improved solubility that the robot will automatically investigate. This process will be optimised and evaluated to demonstrate that the robot is "learning" how to make these medicines better. The study will then move on to exploration of multiple product attributes at the same time, akin to "real world" medicine formulation. The project will match processes the robot performs to those used by industry, to ensure the findings are translatable, guided by collaboration with Bayer. Furthermore, the technology will be designed to use industry-standard software, QBDvision, for high-quality handling and reporting of data. Thus, the robot scientist also provides immaculate reporting of results that are needed for approval of new medicines.
人工智能(AI)正在通过预测大型数据集的未来行为来彻底改变我们的世界。最近的兴奋围绕着AI的兴奋增长,需要小(<100)数据集,从而指导像药品这样的重要领域的投资。 “主动学习”(AL)技术使用实验结果,根据状态空间的区域不太确定其预测,为新实验设计提出建议。与AL相比,该模型试图找到给定目标概况的最佳材料,而与AL相比,该模型试图找到最佳的材料,该模型试图找到构建强大且可解释的模型。该项目将旨在开发一个廉价的机器人配方器,并通过AL-DREAKH决策来加速医学制造。可以预见的是,能够执行常规实验室任务的机器人,例如处理液体和进行分析测量,可以通过回归AL算法来指导它,以至于它不仅执行任务,而且还可以学习并执行下一个逻辑步骤,最终开发高质量,安全,有效的液体药物。整合AI,机器人技术和自动分析是一个巨大的挑战,但是结果可能是惊人的。机器人配方器可以使用较大的设计空间迅速通过质量数据来促进候选药物的候选药物,而浪费很少。这将在项目中通过挑战机器人的复杂药物来证明,这可能是未来的核心药物。可以预见的是,这种方法将能够鉴定出传统配方方法无法使用的药物和添加剂的复杂和不直觉的组合。预计该项目将对未来的创新产生逐步影响。与当前的机器人公式流相比,机器人配方器(例如材料创新工厂中使用的机器人公式流)相比,可以使用开源软件在标准PC上运行算法。这样,该方法可以在较低的资源环境中用于当地优先药物。及时对算法集成的重点是充分利用最近的回归原则,以及提出的蓝图适合AI的未来发展。为了实现该项目的雄心勃勃的目标,将遵循以下过程。首先,将指示廉价的液体处理机器人(9K,由PI拥有),以单个读出(例如吸收)来开发药物和添加剂(溶液中)的混合物。 XARM 5机器人臂将与液体处理机器人连接,以使公式可以转移到分析仪器中。然后,回归Al算法将分析哪些条件导致溶解度,并对机器人将自动研究的溶解度提高的公式进行预测。该过程将经过优化和评估,以证明机器人正在“学习”如何使这些药物更好。然后,这项研究将继续探索多种产品属性,类似于“现实世界”医学配方。该项目将匹配机器人执行的过程与行业所使用的过程,以确保在与拜耳合作的指导下,确保调查结果可以翻译。此外,该技术将设计用于使用行业标准的软件QBDVision,用于高质量处理和报告数据。这是机器人科学家还提供了完美的报告,以批准新药所需的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Cook其他文献

Reading graphically: Examining the effects of graphic novels on the reading comprehension of high school students
图画阅读:检验图画小说对高中生阅读理解的影响
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Cook
  • 通讯作者:
    Michael Cook
AI-based Game Design Patterns
基于人工智能的游戏设计模式
THE EARLY HISTORY OF CHINESE COMMUNIST PARTY
中国共产党的早期历史
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masahito Ando (Margaret Procter;Michael Cook;Caroline Williams;eds.);ISHIKAWAYOSHIHIRO
  • 通讯作者:
    ISHIKAWAYOSHIHIRO
Adapting and Enhancing Evolutionary Art for Casual Creation
适应和增强进化艺术的休闲创作
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Colton;J. Mccormack;Sebastian Berns;E. Petrovskaya;Michael Cook
  • 通讯作者:
    Michael Cook
Revealing Game Dynamics via Word Embeddings of Gameplay Data
通过游戏数据的词嵌入揭示游戏动态

Michael Cook的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Cook', 18)}}的其他基金

Engineering thermoresponsive materials via supracolloidal assembly in polymer-stabilised emulsions.
通过聚合物稳定乳液中的超胶体组装来工程热响应材料。
  • 批准号:
    EP/T00813X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 19.11万
  • 项目类别:
    Research Grant

相似国自然基金

染色质重塑子对儿童智力发育障碍的机制研究及诊断标志物探索
  • 批准号:
    82330049
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
KCNQ2基因变异导致智力障碍的致病机制研究
  • 批准号:
    82301347
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新烟碱类农药通过肠道菌群影响儿童智力发育的机制研究
  • 批准号:
    22366007
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
MTOR基因突变异常激活mTORC2-PKC信号通路导致智力障碍-巨脑畸形综合征的机制研究
  • 批准号:
    82302096
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于轴突密度纵向分析智力障碍患儿语言功能康复中双流语言网络可塑性机制的MRI-NODDI研究
  • 批准号:
    82360337
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
  • 批准号:
    10723802
  • 财政年份:
    2023
  • 资助金额:
    $ 19.11万
  • 项目类别:
Sequential Modeling for Prediction of Periodontal Diseases: an intra-Collaborative Practice-based Research study (ICPRS)
牙周病预测的序列模型:基于内部协作实践的研究 (ICPRS)
  • 批准号:
    10755010
  • 财政年份:
    2023
  • 资助金额:
    $ 19.11万
  • 项目类别:
Research Project 2: Neuroblastoma
研究项目2:神经母细胞瘤
  • 批准号:
    10712294
  • 财政年份:
    2023
  • 资助金额:
    $ 19.11万
  • 项目类别:
Artificial Intelligence-based decision support for chemotherapy-response assessment in Brain Tumors
基于人工智能的脑肿瘤化疗反应评估决策支持
  • 批准号:
    10589512
  • 财政年份:
    2023
  • 资助金额:
    $ 19.11万
  • 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
  • 批准号:
    10699171
  • 财政年份:
    2023
  • 资助金额:
    $ 19.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了