Dopant-based Quantum Technologies in Silicon

硅中基于掺杂剂的量子技术

基本信息

  • 批准号:
    EP/Z531236/1
  • 负责人:
  • 金额:
    $ 161.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Quantum technologies have seen considerable development over the last decade and there are now several material platforms available in which a small number of qubits can be operated; such as those based on trapped ions, superconducting, or semiconductor materials. Of these, one of the most promising current qubit implementations are dopant spins in silicon. The coherent times of electron and nuclear spins in silicon routinely exceeds milliseconds and seconds, respectively. At the same time, the silicon platform benefits from being able to build on the expertise and fabrication facilities of the semiconductor industry. Nevertheless, using semiconductor materials as a platform for solid-state qubits comes with its own unique challenges that are different from even state-of-the art-classical silicon technology. For example, unlike semiconductor chips found in classical electronics, spin qubits are susceptible to even the smallest magnetic field fluctuations, are sensitive to charge fluctuations via spin-to-charge coupling pathways such as spin-orbit or exchange coupling, and typically require operation at cryogenic temperatures. To develop dopant spins in silicon into a viable and scalable technology that would benefit society still requires a number of step changes and sustained investment from academic and industry partners. Here, we will therefore bring together a network of people from both UK and overseas universities, as well as many industry collaborators, which are uniquely suited to address these challenges.Of the key capabilities that our network of people brings, the first is the ability to fabricate dopant devices with atomic precision (UCL). Internationally there are very few groups with this expertise, and in some aspects, such as the incorporation of As dopants in silicon, our expertise is truly unique. To assess the devices requires mK transport measurements to establish key metrics such as quantum coherence and gate fidelities. Here we bring together several groups (UCL, Sydney) which have a long track record in this regard, as well as the required theoretical underpinning in terms of benchmarking and quantum error correction (Sydney, McGill). Still, for a full understanding of the device performance it is essential to understand and, quite literally, map out the performance of the quantum devices with energy and spatial resolution not possible with any conventional technology. In our network, we have the capability to combine the transport measurements with mK scanning gate mapping of the device (Cambridge) and single-electron sensitivity on the nm scale (McGill). The work will be brought together in two work packages, the first focussing on building the required qubit fabrication and device structures, whereas the second work package will focus on creating entanglement between physically separated qubit.Combining these key capabilities and research efforts into a single network allows us to go significantly beyond the current state of the art in terms of quantum device development and characterisation such that reliable and viable prototypes can be built. Looking beyond the first prototypes the network will also be working on the scalability of the platform, both in terms of device fabrication (UCL) and the required - classical cryogenic - control electronics (Sydney). An additional benefit is that the research group is strongly integrated with industrial leaders, in terms of data acquisition, materials characterisation and hardware and software development. To ensure our research will reach a wide audience and be available to all relevant stakeholders we will have a dedicated outreach programme (Sydney lead).
在过去的十年中,量子技术已经看到了很大的发展,现在有几种可用的材料平台可以操作少数Qubits;例如基于被困离子,超导或半导体材料的那些。其中,当前最有前途的量子量子实施之一是硅中的掺杂剂旋转。硅中电子和核自旋的相干时间通常超过毫秒和秒。同时,硅平台能够建立在半导体行业的专业知识和制造设施上。然而,使用半导体材料作为固态尺度的平台,其独特的挑战与最先进的经典硅技术不同。例如,与在经典电子学中发现的半导体芯片不同,自旋Qubits甚至最小的磁场波动都容易受到敏感,可以通过自旋到电荷耦合途径(例如旋转轨道或交换耦合)来充电波动,并且通常需要在低温温度。为了将硅的掺杂剂旋转成可行的可扩展技术,这将使社会受益仍然需要多个步骤变化,并需要从学术和行业合作伙伴那里进行持续投资。因此,在这里,我们将汇集来自英国和海外大学的人们以及许多行业合作者的网络,这些网络非常适合应对这些挑战。我们的人网络带来的关键能力,首先是能力用原子精度(UCL)制造掺杂剂设备。在国际上,很少有具有这种专业知识的群体,在某些方面,例如在硅中掺入AS掺杂剂,我们的专业知识确实是独一无二的。为了评估设备,需要MK运输测量以建立关键指标,例如量子相干性和门倒足。在这里,我们汇集了几个小组(UCL,悉尼),这些小组在这方面具有很长的记录,以及在基准测试和量子误差校正方面所需的理论基础(悉尼,麦吉尔)。尽管如此,为了充分了解设备性能,必须使用任何常规技术来理解并从字面上绘制具有能量和空间分辨率的量子设备的性能。在我们的网络中,我们有能力将运输测量与设备的MK扫描门映射(剑桥)和NM尺度上的单电子灵敏度相结合。这项工作将在两个工作包中汇集在一起​​,这是第一个重点是建立所需的值制造和设备结构,而第二个工作包将集中于在物理分离的Qubit.com之间建立纠缠。在量子设备的开发和表征方面,可以使我们大大超出当前最新技术状态,从而可以构建可靠且可行的原型。超越第一个原型,网络还将在平台的可扩展性上,无论是在设备制造(UCL)和所需的 - 经典的低温 - 控制电子设备(悉尼)方面。另一个好处是,在数据获取,材料表征以及硬件和软件开发方面,研究小组与工业领导者强烈融合。为了确保我们的研究能够吸引广泛的受众,并适用于所有相关的利益相关者,我们将有一个专门的外展计划(悉尼领导者)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Curson其他文献

Polythiophene nanofibres for optoelectronic applications
用于光电应用的聚噻吩纳米纤维
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nico Seidler;Neil Curson;G. M. Lazzerini;G. Destri;Giovanni Marletta;Oliver Fenwick;F. D. Stasio
  • 通讯作者:
    F. D. Stasio

Neil Curson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neil Curson', 18)}}的其他基金

Room-Temperature Single Atom Silicon Quantum Electronics
室温单原子硅量子电子学
  • 批准号:
    EP/V027700/1
  • 财政年份:
    2021
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Research Grant
Nanoscale Germanium Electronics
纳米级锗电子
  • 批准号:
    EP/I02865X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Research Grant

相似国自然基金

基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
  • 批准号:
    12305031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于微区光电性能测量技术的红光微型量子点发光二极管尺寸缩小失效机制研究
  • 批准号:
    12374385
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于时域分辨的单个量子点的双激子结合能研究
  • 批准号:
    62305201
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于纳米光机电耦合系统的量子霍尔态研究
  • 批准号:
    62375160
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于超导电路晶格系统拓扑量子信息处理的研究
  • 批准号:
    12375020
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Dopant-Based Scalable Platform in Silicon for Quantum Information Processing
用于量子信息处理的基于掺杂剂的可扩展硅平台
  • 批准号:
    RGPIN-2020-05738
  • 财政年份:
    2022
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Discovery Grants Program - Individual
Dopant-Based Scalable Platform in Silicon for Quantum Information Processing
用于量子信息处理的基于掺杂剂的可扩展硅平台
  • 批准号:
    RGPIN-2020-05738
  • 财政年份:
    2021
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Discovery Grants Program - Individual
Dopant-Based Scalable Platform in Silicon for Quantum Information Processing
用于量子信息处理的基于掺杂剂的可扩展硅平台
  • 批准号:
    DGECR-2020-00217
  • 财政年份:
    2020
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Discovery Launch Supplement
Dopant-Based Scalable Platform in Silicon for Quantum Information Processing
用于量子信息处理的基于掺杂剂的可扩展硅平台
  • 批准号:
    RGPIN-2020-05738
  • 财政年份:
    2020
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Discovery Grants Program - Individual
Development of dopant atom devices based on silicon nanostructures
基于硅纳米结构的掺杂原子器件的开发
  • 批准号:
    23226009
  • 财政年份:
    2011
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了