EPSRC Centre for Future PCI Planning

EPSRC 未来 PCI 规划中心

基本信息

  • 批准号:
    EP/Z531182/1
  • 负责人:
  • 金额:
    $ 162.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Percutaneous Coronary Intervention (PCI) is a common clinical procedure used to treat obstructive coronary artery disease, one of the leading causes of death. The overwhelming majority of patients will receive drug-eluting stent devices that act as a supporting scaffold and deliver drugs to counteract renarrowing. While this technology has been truly revolutionary, hundreds of thousands of patients worldwide annually still require an invasive repeat procedure, representing a huge economic burden on society and increasing pressure on health care resources. The key issue is that it is currently not feasible to quantitatively predict the immediate effect of a specific intervention and if/when a patient will suffer from renarrowing in the longer-term. Tools that enable optimisation of the procedure on a patient-specific basis are therefore urgently needed to improve patient outcomes and alleviate the resource burden on healthcare providers.Critical to optimising the procedure is assessment of the individual patient's level of disease. Advances in medical imaging technology now make it possible to visualise the degree of obstruction and, crucially, the composition of the underlying plaque, potentially providing clinicians with a wealth of information to inform and plan PCI. However, decisions are presently left to operator experience and there are no definitive guidelines for how to optimise PCI for a given patient, particularly in complex cases.In recent years, we have seen significant developments in computational models of PCI, that have the potential to inform PCI strategy in the future. However, they suffer from limitations and significant methodological advances are required before they can be routinely integrated within the clinic. These primarily relate to increasing the realism and accuracy of the models, improving their robustness, predictive power and speed of computation. This last point is critical, with the exorbitant run times of current computational models significantly hampering timely decision support and genuine impact in the clinic.The EPSRC Centre for Future PCI Planning will address these challenges by developing a computational decision support tool to assist clinicians with PCI planning. Advances in mathematical modelling of fluid-structure interaction, lesion preparation, drug delivery and growth & remodelling, allied to statistical inference, emulation, uncertainty quantification and optimisation will enable us to create computational tools able to answer key clinical questions like:1) What will a given patient's artery look like immediately after device deployment?2) How should the plaque be modified prior to stent deployment, and what specialist tools should be used to do this?3) What length and diameter of stent should be used, and what should be the balloon deployment inflation pressure?4) What is the optimal placement of the stent?5) In the case of complex bifurcation lesions, where potentially multiple stents and balloons are deployed, what is the optimal technique?6) To what extent is the artery likely to renarrow, over what time course, and how can the PCI strategy be optimised to avoid this?7) Can we effectively plan PCI solely on pre-procedural imaging such as Computed Tomography?Working together with world-leading International Centres, and a range of leading imaging and medical device companies, the EPSRC Centre for Future PCI Planning will develop novel and robust mathematical and statistical methodologies, supported by large clinical data sets, to create the novel, fast and accurate tools that will help realise our vision of integrating computational tools for PCI planning within the clinic.
经皮冠状动脉介入治疗(PCI)是一种常见的临床手术,用于治疗阻塞性冠状动脉疾病,阻塞性冠状动脉疾病是导致死亡的主要原因之一。绝大多数患者将接受药物洗脱支架装置,该支架装置充当支撑支架并输送药物以抵抗再狭窄。虽然这项技术确实具有革命性,但每年全球仍有数十万患者需要进行侵入性重复手术,这给社会带来了巨大的经济负担,并对医疗保健资源造成了越来越大的压力。关键问题是,目前无法定量预测特定干预措施的直接效果以及患者是否/何时会在长期内遭受再狭窄。因此,迫切需要能够根据患者具体情况优化手术的工具,以改善患者的治疗结果并减轻医疗保健提供者的资源负担。优化手术的关键是评估个体患者的疾病水平。医学成像技术的进步现在使阻塞程度以及最重要的是底层斑块的成分可视化成为可能,这可能为临床医生提供丰富的信息来告知和计划 PCI。然而,目前的决定取决于操作员的经验,并且没有关于如何针对特定患者优化 PCI 的明确指南,特别是在复杂的病例中。近年来,我们看到 PCI 计算模型的重大发展,有可能为未来 PCI 战略提供信息。然而,它们也存在局限性,并且需要在方法上取得重大进展才能常规地集成到临床中。这些主要涉及提高模型的真实性和准确性,提高模型的鲁棒性、预测能力和计算速度。最后一点至关重要,当前计算模型的运行时间过长,严重阻碍了及时的决策支持和对临床的真正影响。EPSRC 未来 PCI 规划中心将通过开发计算决策支持工具来帮助临床医生进行 PCI 来应对这些挑战规划。流固相互作用、病变准备、药物输送以及生长和重塑的数学模型的进步,与统计推断、仿真、不确定性量化和优化相结合,将使我们能够创建能够回答关键临床问题的计算工具,例如:1)特定患者的动脉在装置部署后立即看起来像什么?2) 在支架部署之前应如何修改斑块,以及应使用哪些专业工具来执行此操作?3) 应使用什么长度和直径的支架,以及应该使用什么成为球囊展开充气压力?4) 支架的最佳放置位置是什么?5) 在复杂分叉病变的情况下,可能部署多个支架和球囊,最佳技术是什么?6) 动脉可能在多大程度上重新缩小时间范围,以及如何优化 PCI 策略以避免这种情况?7) 我们能否仅通过计算机断层扫描等术前成像来有效地规划 PCI?与世界领先的国际中心和一系列机构合作领先的影像和医学EPSRC 未来 PCI 规划中心将在大型临床数据集的支持下开发新颖且强大的数学和统计方法,以创建新颖、快速且准确的工具,这将有助于实现我们将 PCI 规划的计算工具集成到医疗器械公司的愿景。诊所。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sean McGinty其他文献

捜査手続における証拠開示
在调查程序中发现证据
取調べのための出頭・滞留義務と取調べ適正化論
出庭和停留接受讯问的义务以及适当讯问的理论
「再審における証拠開示」
《再审证据公开》
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    李鎬元(著);金炳学(訳);金炳学;金炳学;金炳学;斎藤司;Sean McGinty;金炳学;Sean McGinty;斎藤司;Sean McGinty;金炳学;斎藤司;Sean McGinty;金炳学;斎藤司;斎藤司;斎藤司;斎藤司;斎藤司;斎藤司;斎藤司;斎藤司
  • 通讯作者:
    斎藤司
The Impact of the First Wave of the COVID-19 Crisis on Small and Medium-sized Enterprises and Credit Guarantee Responses: Early lessons from Japan
第一波 COVID-19 危机对中小企业的影响和信用担保应对措施:日本的早期教训
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sean McGinty;Konari Uchida;Kazuo Yamada;家森信善・米田耕士;Kitano Shigeto;Hikaru Ogawa;Y Kurihara;Nobuyoshi Yamori and Tomoko Aizawa
  • 通讯作者:
    Nobuyoshi Yamori and Tomoko Aizawa
Partial environmental tax coordination and political delegation
部分环境税协调和政治授权
  • DOI:
    10.1016/j.jeem.2021.102565
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Sean McGinty;Konari Uchida;Kazuo Yamada;家森信善・米田耕士;Kitano Shigeto;Hikaru Ogawa
  • 通讯作者:
    Hikaru Ogawa

Sean McGinty的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

软件定义多命名空间可编程未来网络演进框架研究
  • 批准号:
    61902172
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
面向软件定义数据中心网络的流量测量机制研究
  • 批准号:
    61701406
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
兴趣包泛洪攻击的协同防范机制研究
  • 批准号:
    61702439
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
移动环境下信息中心网络路由可扩展问题研究
  • 批准号:
    61702223
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
未来互联网中面向命名数据高变动时间局部性的高效、健壮路由机制研究
  • 批准号:
    61672486
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

EPSRC Centre for Doctoral Training in Future Autonomous Robotic Systems (FARSCOPE-TU: Towards Ubiquity)
EPSRC 未来自主机器人系统博士培训中心(FARSCOPE-TU:迈向无处不在)
  • 批准号:
    EP/S021795/1
  • 财政年份:
    2019
  • 资助金额:
    $ 162.53万
  • 项目类别:
    Training Grant
EPSRC Centre for Doctoral Training in Sensor Technologies for a Healthy and Sustainable Future
EPSRC 传感器技术博士培训中心,共创健康和可持续的未来
  • 批准号:
    EP/S023046/1
  • 财政年份:
    2019
  • 资助金额:
    $ 162.53万
  • 项目类别:
    Training Grant
EPSRC Centre for Doctoral Training in Future Propulsion and Power
EPSRC 未来推进和动力博士培训中心
  • 批准号:
    EP/S023003/1
  • 财政年份:
    2019
  • 资助金额:
    $ 162.53万
  • 项目类别:
    Training Grant
EPSRC Centre for Doctoral Training in Future Infrastructure and Built Environment: Resilience in a Changing World (FIBE2)
EPSRC 未来基础设施和建筑环境博士培训中心:不断变化的世界中的复原力 (FIBE2)
  • 批准号:
    EP/S02302X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 162.53万
  • 项目类别:
    Training Grant
EPSRC Centre for Doctoral Training in Future Innovation in Non-Destructive evaluation (FIND)
EPSRC 无损评估未来创新博士培训中心 (FIND)
  • 批准号:
    EP/S023275/1
  • 财政年份:
    2019
  • 资助金额:
    $ 162.53万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了