Discovering How Root Sense Hard Soils
探索根系如何感知硬土
基本信息
- 批准号:EP/Y036697/1
- 负责人:
- 金额:$ 161.88万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Soil compaction represents a major challenge facing modern agriculture. When combined with other stresses like drought, soil compaction can reduce crop yields by up to 75% and causes billions of Euros in losses annually. The GROUNDBREAKING project addresses how plant roots sense different levels of soil compaction and modify their growth. This Project builds on my recent discovery that root responses to a high level of soil compaction are controlled by the gaseous signal "ethylene" (Pandey et al., 2021, Science,Huang et al., 2022, PNAS). However, agriculture soils vary greatly in terms of their hardness. Europe, inaddition to 36-million hectares of highly compacted soil, contains 25-million-hectares of soil prone to medium compaction. Therefore, discovering which signalling pathways control root sensing of low to medium and high to very high levels of soil compaction is vital for developing more climate resilient crops. I hypothesise that roots employ novel volatile signals to sense medium levels of soil compaction, and mechanical signalling pathways to sense very high level of soil compaction. The premise of this novel signalling paradigm is based on the size of volatile signalling molecules and soil pores that impact the ability of gaseous signals to diffuse through compacted soil. However, when soil pore size is too small to allowgaseous exchange for even small signals like ethylene, mechanical signalling will take over to control root responses in very highly compacted soil. The GROUNDBREAKING project will pioneer the characterisation of novel volatile and mechanical signalling pathways I have recently identified control root compaction responses, revealing their underlying molecular, cellular and tissue-scale mechanisms, then creating a new paradigm for root-soil signalling. To realise these ambitious goals, I will integrate interdisciplinary expertise in soil physics, state-of-the-art non-invasive imaging, cutting edge molecular biology and genetic approaches under natural soil conditions. The GROUNDBREAKING project is also very timely as the new knowledge generated about compactionresponses will underpin efforts to engineer crop roots to grow deeper and access more reliable water resources.
土壤压实代表了现代农业面临的重大挑战。当结合干旱等其他压力时,土壤压实可以将农作物产量降低多达75%,每年造成数十亿欧元的损失。开创性的项目解决了植物根部如何感知不同水平的土壤压实并改变其生长。该项目基于我最近的发现,即对高水平土壤压实的根反应受气态信号“乙烯”控制(Pandey等,2021,Science,Huang等,2022,PNAS)。但是,农业土壤的硬度差异很大。欧洲对高度压实的土壤的3,600万公顷不足,含有2500万公顷的土壤,容易发生中等压实。因此,发现哪些信号通路控制低至中,高到非常高的土壤压实的根感测对于发展更多气候弹性作物至关重要。我假设根部采用新型的挥发性信号来感知中等水平的土壤压实,以及机械信号传导途径,以感觉到非常高的土壤压实水平。这种新型信号范式的前提是基于影响气体信号通过紧凑的土壤扩散的能力的挥发性信号分子和土壤孔的大小。但是,当土壤孔径太小以至于允许旋转的交换即使是乙烯等小信号时,机械信号传导将接管以控制非常紧凑的土壤中的根反应。开创性的项目将开拓新的挥发性和机械信号通路的表征,我最近确定了对照根压实反应,从而揭示了它们的基本分子,细胞和组织尺度机制,然后为根 - 土壤信号传导创建了新的范式。为了实现这些雄心勃勃的目标,我将在自然土壤条件下整合土壤物理学,最先进的非侵入性成像,尖端分子生物学和遗传方法方面的跨学科专业知识。突破性的项目也非常及时,因为有关压缩物的新知识将构成努力,以努力设计耕作的根源,以增强并获得更可靠的水资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bipin Pandey其他文献
Bipin Pandey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bipin Pandey', 18)}}的其他基金
PUSHING THROUGH HARD TIMES: uncovering how roots sense soil compaction
度过艰难时期:揭示根部如何感知土壤压实
- 批准号:
BB/V00557X/1 - 财政年份:2021
- 资助金额:
$ 161.88万 - 项目类别:
Fellowship
相似国自然基金
最优化与权力如何共同影响社会“内卷”:基于认知过程模型的探讨
- 批准号:32371124
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
如何应对日趋严重的职场物化?基于员工、组织和数智技术的干预措施研究
- 批准号:72372012
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
电商平台个性化推荐信息如何影响消费者网购行为?基于田野实验的实证研究
- 批准号:72302139
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
资本市场开放如何影响市场效率与系统性风险:基于ETF互联互通的准自然实验
- 批准号:72302232
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
菌根栖息地之间的连接性如何影响生态系统的功能
- 批准号:32371721
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
How Nutrients Shape Plant Roots: A Spatial Analysis of the Signaling Networks that Control Root Responses to Phosphorus
养分如何塑造植物根部:控制根部对磷反应的信号网络的空间分析
- 批准号:
2888777 - 财政年份:2023
- 资助金额:
$ 161.88万 - 项目类别:
Studentship
Diving Deeper: Unravelling How Plants Regulate Root Growth Angle
深入研究:揭示植物如何调节根部生长角度
- 批准号:
BB/X014843/1 - 财政年份:2023
- 资助金额:
$ 161.88万 - 项目类别:
Research Grant
MiNute Transport: How Mineral Nutrient Transport happens in the root?
MiNute 运输:根部矿物质养分运输如何发生?
- 批准号:
BB/W018756/1 - 财政年份:2023
- 资助金额:
$ 161.88万 - 项目类别:
Research Grant
How do plant roots acclimate to highly concentrated salt water?
植物根部如何适应高浓度盐水?
- 批准号:
20K06312 - 财政年份:2020
- 资助金额:
$ 161.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
How long can soil spore banks of ectomycorrhizal fungi survive?: Challenges with geological boring cores
外生菌根真菌的土壤孢子库能存活多久?:地质钻孔的挑战
- 批准号:
20K21325 - 财政年份:2020
- 资助金额:
$ 161.88万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)