Discovering How Root Sense Hard Soils
探索根系如何感知硬土
基本信息
- 批准号:EP/Y036697/1
- 负责人:
- 金额:$ 161.88万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Soil compaction represents a major challenge facing modern agriculture. When combined with other stresses like drought, soil compaction can reduce crop yields by up to 75% and causes billions of Euros in losses annually. The GROUNDBREAKING project addresses how plant roots sense different levels of soil compaction and modify their growth. This Project builds on my recent discovery that root responses to a high level of soil compaction are controlled by the gaseous signal "ethylene" (Pandey et al., 2021, Science,Huang et al., 2022, PNAS). However, agriculture soils vary greatly in terms of their hardness. Europe, inaddition to 36-million hectares of highly compacted soil, contains 25-million-hectares of soil prone to medium compaction. Therefore, discovering which signalling pathways control root sensing of low to medium and high to very high levels of soil compaction is vital for developing more climate resilient crops. I hypothesise that roots employ novel volatile signals to sense medium levels of soil compaction, and mechanical signalling pathways to sense very high level of soil compaction. The premise of this novel signalling paradigm is based on the size of volatile signalling molecules and soil pores that impact the ability of gaseous signals to diffuse through compacted soil. However, when soil pore size is too small to allowgaseous exchange for even small signals like ethylene, mechanical signalling will take over to control root responses in very highly compacted soil. The GROUNDBREAKING project will pioneer the characterisation of novel volatile and mechanical signalling pathways I have recently identified control root compaction responses, revealing their underlying molecular, cellular and tissue-scale mechanisms, then creating a new paradigm for root-soil signalling. To realise these ambitious goals, I will integrate interdisciplinary expertise in soil physics, state-of-the-art non-invasive imaging, cutting edge molecular biology and genetic approaches under natural soil conditions. The GROUNDBREAKING project is also very timely as the new knowledge generated about compactionresponses will underpin efforts to engineer crop roots to grow deeper and access more reliable water resources.
土壤板结是现代农业面临的重大挑战。当与干旱等其他压力相结合时,土壤板结可使农作物产量降低高达 75%,每年造成数十亿欧元的损失。 GROUNDBREAKING 项目解决了植物根系如何感知不同程度的土壤压实并改变其生长的问题。该项目建立在我最近的发现之上,即根部对高水平土壤压实的反应是由气体信号“乙烯”控制的(Pandey 等人,2021,Science,Huang 等人,2022,PNAS)。然而,农业土壤的硬度差异很大。欧洲除了3600万公顷的高度压实土壤外,还有2500万公顷的中度压实土壤。因此,发现哪些信号通路控制根部对低至中、高至极高水平土壤压实度的感知对于开发更具气候适应能力的作物至关重要。我假设根部利用新颖的挥发性信号来感知中等水平的土壤压实度,并利用机械信号通路来感知非常高水平的土壤压实度。这种新颖的信号范式的前提是基于挥发性信号分子和土壤孔隙的大小,这些大小影响气体信号通过压实土壤扩散的能力。然而,当土壤孔径太小而无法进行乙烯等小信号的气体交换时,机械信号将接管控制高度压实土壤中的根系反应。这个开创性项目将率先表征我最近确定的控制根部压实反应的新型挥发性和机械信号传导途径,揭示其潜在的分子、细胞和组织尺度机制,然后为根系土壤信号传导创建一个新的范例。为了实现这些雄心勃勃的目标,我将整合土壤物理学、最先进的非侵入性成像、尖端分子生物学和自然土壤条件下的遗传方法等方面的跨学科专业知识。这个开创性项目也非常及时,因为产生的关于压实响应的新知识将支持工程作物根系生长得更深并获得更可靠的水资源的努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bipin Pandey其他文献
Bipin Pandey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bipin Pandey', 18)}}的其他基金
PUSHING THROUGH HARD TIMES: uncovering how roots sense soil compaction
度过艰难时期:揭示根部如何感知土壤压实
- 批准号:
BB/V00557X/1 - 财政年份:2021
- 资助金额:
$ 161.88万 - 项目类别:
Fellowship
相似国自然基金
最优化与权力如何共同影响社会“内卷”:基于认知过程模型的探讨
- 批准号:32371124
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
汇率制度弹性如何影响宏观经济韧性:理论、实证和政策研究
- 批准号:72303027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大宗商品如何影响企业资产定价:路径、机制及对策研究
- 批准号:72303171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
如何应对日趋严重的职场物化?基于员工、组织和数智技术的干预措施研究
- 批准号:72372012
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
菌根栖息地之间的连接性如何影响生态系统的功能
- 批准号:32371721
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
How Nutrients Shape Plant Roots: A Spatial Analysis of the Signaling Networks that Control Root Responses to Phosphorus
养分如何塑造植物根部:控制根部对磷反应的信号网络的空间分析
- 批准号:
2888777 - 财政年份:2023
- 资助金额:
$ 161.88万 - 项目类别:
Studentship
Diving Deeper: Unravelling How Plants Regulate Root Growth Angle
深入研究:揭示植物如何调节根部生长角度
- 批准号:
BB/X014843/1 - 财政年份:2023
- 资助金额:
$ 161.88万 - 项目类别:
Research Grant
MiNute Transport: How Mineral Nutrient Transport happens in the root?
MiNute 运输:根部矿物质养分运输如何发生?
- 批准号:
BB/W018756/1 - 财政年份:2023
- 资助金额:
$ 161.88万 - 项目类别:
Research Grant
How do plant roots acclimate to highly concentrated salt water?
植物根部如何适应高浓度盐水?
- 批准号:
20K06312 - 财政年份:2020
- 资助金额:
$ 161.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
How long can soil spore banks of ectomycorrhizal fungi survive?: Challenges with geological boring cores
外生菌根真菌的土壤孢子库能存活多久?:地质钻孔的挑战
- 批准号:
20K21325 - 财政年份:2020
- 资助金额:
$ 161.88万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)