Dead vs Alive Quantum Biology: Magnetoreception Enabled via Non-Markovianity

死与生量子生物学:通过非马尔可夫性实现磁接收

基本信息

  • 批准号:
    EP/X027376/1
  • 负责人:
  • 金额:
    $ 72.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The emerging field of quantum biology suggests that nature may utilise non-trivial quantum effects to realize a classically unattainable advantage in the complex systems of life.The avian compass, which allows migratory birds to navigate over vast distances, is thought to be a prime example where quantum effects underpin biology. Evidence implies that this sense originates from a light-activated chemical reaction taking place in a protein called cryptochrome, located in the bird's eye. The reaction initiates magnetic field sensitive dynamics of spins, an intrinsic quantum property, of electrons and magnetic nuclei in two "radical" molecules. Consequently, the recombination of the radical pair to reform the protein's resting state is thought to acquire magnetic field sensitivity. However, many open questions remain to be solved to understand the exquisite, possibly quantum enhanced, sensitivity of nature and unlock its design principles.The majority of current models of the avian compass treat the dynamics of the cryptochrome in isolation. However, recent studies show that the response of an isolated cryptochrome to weak magnetic fields is likely insufficient to support bird navigation. We suggest that the key to this 'interaction strength gap' can be found in the protein's environment. Specifically, we propose that the oft-neglected openness of the spin system to the strongly coupled structured environment can provide an essential sensitivity boost through driving and noise contributions, caused by the physiological motion of the protein at timescales relevant to magnetoreception, and mediated via inter-radical interactions. This enhancement principle contrasts with common efforts to reduce environment interaction, which is seen as detrimental, in most instances of man-made quantum technology. However, for magnetoreception, our preliminary results suggest that, counterintuitively, the environment itself may be utilized to reinforce and revive quantum dynamics - in particular if the interaction with the environment has a finite memory time (non-Markovianity).We will develop new theory and computationally tractable approaches to unlock the potential of non-Markovian spin dynamics driven by environmental coupling, and to systematically assess the large complex systems of radical-pairs of biology. We will employ wave-function-based methodology in tandem with high-performance and GPU computing techniques to simulate a never before accessible regime that will elucidate non-Markovian enhanced magnetic field sensitivity for realistic systems. Our efforts will culminate in a general, user-friendly software package enabling complex spin dynamics simulations for the scientific community. Our derived insight will supersede current theoretical studies that are oversimplified and resolve the dilemma that current experiments on cryptochrome outside of its biological setting predict inadequate magnetic field sensitivity, thereby opening a new paradigm for biological magnetosensitivity.This interdisciplinary research program will not only invite a "live" treatment of quantum biology by highlighting a functional role of the living system environment, but also provide essential understanding of spin dynamics ubiquitous in chemistry. Several of these potentially magnetic field sensitive chemical reactions could have implications in biology and health (e.g. neurogenesis, lipid peroxidation), motivating a reassessment of exposure guidelines, and generating tools to control reactions in novel medical treatments. Furthermore, by learning from nature and improving upon it, design principles may be found for condensed phase technology manipulating quantum effects, such as quantum sensors that utilize noise as a resource. This will be addressed in the present research project by developing non-Markovian open quantum system treatments of radical reactions accounting for radical motion and complexity, facilitated by advanced numerical approaches.
量子生物学的新兴领域表明,大自然可能利用非平凡的量子效应在复杂的生命系统中实现传统上无法实现的优势。鸟类指南针被认为是一个很好的例子,它允许候鸟进行远距离导航。量子效应是生物学的基础。有证据表明,这种感觉源自鸟眼中一种名为隐花色素的蛋白质中发生的光激活化学反应。该反应引发了两个“自由基”分子中电子和磁核的磁场敏感的自旋动力学,这是一种固有的量子特性。因此,自由基对重组以改变蛋白质的静止状态被认为获得了磁场敏感性。然而,为了理解大自然精致的、可能是量子增强的敏感性并解锁其设计原理,许多悬而未决的问题仍有待解决。目前大多数鸟类指南针模型都孤立地对待隐花色素的动力学。然而,最近的研究表明,孤立的隐花色素对弱磁场的响应可能不足以支持鸟类导航。我们认为这种“相互作用强度差距”的关键可以在蛋白质的环境中找到。具体来说,我们提出,经常被忽视的自旋系统对强耦合结构环境的开放性可以通过驱动和噪声贡献来提供必要的灵敏度提升,这些贡献是由蛋白质在与磁接收相关的时间尺度上的生理运动引起的,并通过内部介导来介导。 - 激进的相互作用。这种增强原理与减少环境相互作用的共同努力形成鲜明对比,在大多数人造量子技术的情况下,环境相互作用被认为是有害的。然而,对于磁接收,我们的初步结果表明,与直觉相反,环境本身可以用来增强和恢复量子动力学 - 特别是如果与环境的相互作用具有有限的记忆时间(非马尔可夫性)。我们将开发新的理论和计算上易于处理的方法来释放环境耦合驱动的非马尔可夫自旋动力学的潜力,并系统地评估生物学自由基对的大型复杂系统。我们将采用基于波函数的方法与高性能和 GPU 计算技术相结合来模拟前所未有的状态,这将阐明现实系统的非马尔可夫增强磁场灵敏度。我们的努力将最终形成一个通用的、用户友好的软件包,为科学界提供复杂的自旋动力学模拟。我们得出的见解将取代当前过于简单化的理论研究,并解决当前对隐花色素在其生物环境之外的实验预测磁场敏感性不足的困境,从而为生物磁敏感性开辟新的范式。这个跨学科研究计划不仅将邀请“通过强调生命系统环境的功能作用来对量子生物学进行“活的”处理,同时也提供了对化学中普遍存在的自旋动力学的基本理解。其中一些潜在的磁场敏感化学反应可能对生物学和健康产生影响(例如神经发生、脂质过氧化),激发对暴露指南的重新评估,并产生控制新型医学治疗反应的工具。此外,通过向自然学习并对其进行改进,可以找到操纵量子效应的凝聚相技术的设计原理,例如利用噪声作为资源的量子传感器。在当前的研究项目中,将通过开发自由基反应的非马尔可夫开放量子系统处理来解决这一问题,并通过先进的数值方法来解决自由基运动和复杂性。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetoreception in cryptochrome enabled by one-dimensional radical motion
一维激进运动实现隐花色素的磁接收
  • DOI:
    http://dx.10.1116/5.0142227
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ramsay J
  • 通讯作者:
    Ramsay J
Magnetoreception in cryptochrome enabled by one-dimensional radical motion
一维激进运动实现隐花色素的磁接收
  • DOI:
    http://dx.10.48550/arxiv.2303.12117
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ramsay J
  • 通讯作者:
    Ramsay J
The Biological Qubit: Calcium Phosphate Dimers, Not Trimers.
生物量子位:磷酸钙二聚体,而不是三聚体。
  • DOI:
    10.1021/acs.jpclett.2c03945
  • 发表时间:
    2022-10-26
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shivang Agarwal;D. Kattnig;Clarice D. Aiello;A. Banerjee
  • 通讯作者:
    A. Banerjee
Avian cryptochrome 4 binds superoxide
禽类隐花色素 4 结合超氧化物
Modeling spin relaxation in complex radical systems using MolSpin.
使用 MolSpin 对复杂自由基系统中的自旋弛豫进行建模。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Kattnig其他文献

Influence of the excitation light intensity on the rate of fluorescence quenching reactions: pulsed experiments
  • DOI:
    10.1039/c6cp08562h
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Gonzalo Angulo;Jadwiga Milkiewicz;Daniel Kattnig;Michał Nejbauer;Yuriy Stepanenko;Jan Szczepanek;Czesław Radzewicz;Paweł Wnuk;Günter Grampp
  • 通讯作者:
    Günter Grampp

Daniel Kattnig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Kattnig', 18)}}的其他基金

Explaining the avian compass through sustained quantum dynamics in driven, open three-radical systems
通过驱动的开放三基系统中的持续量子动力学解释鸟类指南针
  • 批准号:
    EP/V047175/1
  • 财政年份:
    2021
  • 资助金额:
    $ 72.79万
  • 项目类别:
    Research Grant
Quantum Dynamics of Radical Pairs Reactions in Membranes: Elucidating Magnetic Field Effects in Lipid Autoxidation
膜中自由基对反应的量子动力学:阐明脂质自氧化中的磁场效应
  • 批准号:
    EP/R021058/1
  • 财政年份:
    2018
  • 资助金额:
    $ 72.79万
  • 项目类别:
    Research Grant

相似国自然基金

污泥稳定处理过程中病毒的赋存特征与灭活机制
  • 批准号:
    52300177
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“持续化学发光与多效抗菌”复合探针的构筑及其关节假体周围感染细菌的检测与灭活研究
  • 批准号:
    82302646
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
载酶水合离子液凝胶集成高酶活与高电导用于紫外防护与传感
  • 批准号:
    52303203
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
长时程超高时空分辨率活细胞动态成像与关联光谱解析
  • 批准号:
    62335008
  • 批准年份:
    2023
  • 资助金额:
    232 万元
  • 项目类别:
    重点项目
基于表面增强拉曼光谱的单个活细菌多目标原位监测与细菌产电机制研究
  • 批准号:
    62375070
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

大腸がん制御を目的とした、食事が関与するNKT細胞活性化を用いた新規免疫治療の開発
开发一种新型免疫疗法,利用饮食相关的 NKT 细胞激活来控制结直肠癌
  • 批准号:
    24K08763
  • 财政年份:
    2024
  • 资助金额:
    $ 72.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
カプサイシンのTRPV1非依存的活性に関与する新規分子標的の同定
鉴定涉及辣椒素 TRPV1 独立活性的新分子靶标
  • 批准号:
    24K08725
  • 财政年份:
    2024
  • 资助金额:
    $ 72.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
人口縮小時代の都市再生に寄与する「公共未利用地」の戦略的活用デザイン
人口萎缩时代助力城市复兴的“闲置公共土地”战略利用设计
  • 批准号:
    24K07806
  • 财政年份:
    2024
  • 资助金额:
    $ 72.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
教育課程における自然体験活動が地域愛着に与える影響
教育课程中自然体验活动对地域依恋的影响
  • 批准号:
    24K05983
  • 财政年份:
    2024
  • 资助金额:
    $ 72.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
地域生活圏における総合騒音に与える航空機騒音の影響解明と評価指標モデルの構築
阐明飞机噪声对当地生活区整体噪声的影响并构建评价指标模型
  • 批准号:
    24K07794
  • 财政年份:
    2024
  • 资助金额:
    $ 72.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了