Electrowetting-enhanced sustainable liquid films for collection of viable airborne pathogens

用于收集活空气传播病原体的电润湿可持续液膜

基本信息

  • 批准号:
    EP/X017591/1
  • 负责人:
  • 金额:
    $ 25.59万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Routinely employed in critical spaces, environmental real-time monitoring systems could offer early (pre-infection) warning to fight the spread of transmissible diseases. Such asset is unfortunately critically missing in the disease spread control arsenal, of which, the COVID-19 crisis is a strong and bitter reminder. Despite the booming of microfluidic techniques, there are currently no systems for true real-time identification of airborne pathogens that would make such an infection transmission monitoring tool possible.Real-time monitoring of bioaerosol requires two fundamental elements: continuous time-resolved collection; and integrated rapid analysis and detection. Requirements that are largely unmet by the most used collection techniques and among them an alarming lack of consideration for in-line integration of the collection technology with the downstream detection one. To bridge this gulf, we introduce a novel collection approach involving a low-volume liquid film as collection medium using integrated microfluidic technology (electrowetting) to control the film stability and allow for continuous extraction of collected material into 'time-resolved' detectable sample. By employing superhydrophilic surfaces, liquid films of immensely large surface area can be created, allowing extremely efficient collection into minuscule volumes. In addition, using liquid films as a collection medium will improve the preservation of the properties of bioaerosols' most fragile constituents.The aim of the project is to provide a new set of tools to bridge the gap separating current bioaerosol collection techniques from actual real-time monitoring by proposing a novel method for time-resolved continuous aerosol collection into liquid film sustained and controlled by electrowetting-DMF. The key objectives are closely related to the realisation and integrations of these basic technologies. The research plan is designed to investigate and validate the key concepts and objectives of the project, which include: - The creation of localised liquid low volume/surface ratio (i.e. high spread) liquid film through the investigation of surface modification processes and fluid property; - The fabrication of a microfluidic droplet dispenser exploiting surface properties; - The design and fabrication of a DMF device for flow control and sample supply; - The design and manufacture of an aerosol collection prototype integrating the microfluidics-controlled sustainable liquid film; - The demonstration of continuous aerosol collection and detection capability; - The rapid reach, efficient dissemination and impact facilitation of the proposed innovation.The proposed project is very high risk with numerous interrogation and challenges that will have to be answered. What is the best way to make the proposed films? Is material collection into those film at all possible? How can the technologies be integrated together to achieve the desired performances? All of this will have to be proven. The challenge is high but the reward in case of success is potentially huge with a new weapon against airborne transmissible diseases. Amid the current pandemics, there is no arguing such diseases represent an enormous socioeconomic cost. A new bioaerosol collection method that combines high concentration rate, time-resolved sampling and downstream connectivity would make the major technological breakthrough required to develop an actual continuous monitoring system. Such tool, enabling real-time identification of airborne pathogens, would be a formidable asset in early detection of diseases. Used in finely meshed network, real time monitoring systems would acquire real-time data to serve high accuracy airborne transmission model. In critical location, such as airports, classrooms or hospitals, they would offer early pre-infection warning allowing rapid respond to hinder or even stop the disease transmission route.
环境实时监测系统通常应用于关键空间,可以提供早期(感染前)预警,以对抗传染病的传播。不幸的是,这种资产在疾病传播控制武器库中严重缺失,其中,COVID-19 危机是一个强烈而痛苦的提醒。尽管微流体技术蓬勃发展,但目前还没有真正实时识别空气传播病原体的系统,使这种感染传播监测工具成为可能。生物气溶胶的实时监测需要两个基本要素:连续时间分辨收集;并集成快速分析和检测。最常用的收集技术在很大程度上无法满足这些要求,其中令人震惊的是缺乏对收集技术与下游检测技术的在线集成的考虑。为了弥合这一鸿沟,我们引入了一种新颖的收集方法,涉及使用集成微流体技术(电润湿)的低容量液膜作为收集介质来控制膜稳定性,并允许将收集的材料连续提取到“时间分辨”可检测样品中。通过采用超亲水表面,可以产生表面积极大的液膜,从而可以极其有效地收集到微小的体积中。此外,使用液膜作为收集介质将改善生物气溶胶最脆弱成分特性的保存。该项目的目的是提供一套新的工具,以弥合当前生物气溶胶收集技术与实际情况之间的差距。通过提出一种新方法,将时间分辨连续气溶胶收集到电润湿-DMF 持续和控制的液膜中,进行时间监测。关键目标与这些基础技术的实现和集成密切相关。该研究计划旨在研究和验证该项目的关键概念和目标,其中包括: - 通过研究表面改性过程和流体特性,创建局部液体低体积/表面比(即高扩散)液膜; - 利用表面特性制造微流体液滴分配器; - 用于流量控制和样品供应的DMF装置的设计和制造; - 集成微流控可持续液膜的气溶胶收集原型的设计和制造; - 连续气溶胶收集和检测能力的演示; - 拟议创新的快速覆盖、有效传播和影响促进。拟议项目风险非常高,需要回答众多质疑和挑战。制作所提议的电影的最佳方式是什么?是否有可能将素材收集到这些影片中?如何将这些技术集成在一起以实现所需的性能?所有这些都必须得到证明。挑战很高,但一旦成功,回报可能是巨大的,因为有了对抗空气传播疾病的新武器。在当前的流行病中,毫无疑问,此类疾病造成了巨大的社会经济成本。一种新的生物气溶胶收集方法,结合了高浓度率、时间分辨采样和下游连接,将实现开发实际连续监测系统所需的重大技术突破。这种工具能够实时识别空气传播的病原体,对于疾病的早期检测将是一笔巨大的财富。实时监控系统用于细网状网络,获取实时数据,为高精度机载传输模型服务。在机场、教室或医院等关键地点,他们会提供早期感染前预警,以便快速做出反应,阻碍甚至阻止疾病传播途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Loic Coudron其他文献

Loic Coudron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

利用等离子增强型分子层沉积技术实现0.5mm弯折挠度半径的超柔性薄膜封装技术研究
  • 批准号:
    62374070
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于超强导热材料的大型风力发电机增强型散热系统研究
  • 批准号:
    52377047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CLDN6特异性结合肽介导的靶向增强型重组溶瘤病毒及其抗卵巢癌的作用研究
  • 批准号:
    82304370
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
增强型负热膨胀材料设计与轻质零热膨胀铝基复合材料的制备及界面结构研究
  • 批准号:
    12374032
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
肾上腺髓质素在增强型体外反搏改善缺血性心力衰竭患者心脏收缩功能中的作用研究
  • 批准号:
    82300432
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PFI-TT: Water disinfection using safe and sustainable copper combined with a locally enhanced electric field
PFI-TT:使用安全且可持续的铜结合局部增强电场进行水消毒
  • 批准号:
    2329669
  • 财政年份:
    2024
  • 资助金额:
    $ 25.59万
  • 项目类别:
    Continuing Grant
Empowering Youth in STEM and Technological Careers through AI-Enhanced Sustainable and Community-Focused Urban Gardening
通过人工智能增强的可持续和以社区为中心的城市园艺,赋予年轻人 STEM 和技术职业的能力
  • 批准号:
    2241766
  • 财政年份:
    2023
  • 资助金额:
    $ 25.59万
  • 项目类别:
    Standard Grant
Recharged Climate aware resilience for sustainable critical and interdependent infrastructure systems enhanced by emerging digital technologies
新兴数字技术增强了可持续关键和相互依赖的基础设施系统的气候意识恢复能力
  • 批准号:
    EP/X037665/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.59万
  • 项目类别:
    Research Grant
Developing sustainable modular homes from enhanced recycled materials
利用增强型回收材料开发可持续的模块化住宅
  • 批准号:
    10052728
  • 财政年份:
    2023
  • 资助金额:
    $ 25.59万
  • 项目类别:
    Investment Accelerator
ReCharged - Climate-aware Resilience for Sustainable Critical and interdependent Infrastructure Systems enhanced by emerging Digital Technologies
ReCharged - 通过新兴数字技术增强可持续关键和相互依赖的基础设施系统的气候意识弹性
  • 批准号:
    EP/Y00986X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.59万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了