Highly integrated GaN power converter to calm the interference

高集成GaN功率转换器,平息干扰

基本信息

  • 批准号:
    EP/Y002261/1
  • 负责人:
  • 金额:
    $ 20.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

In various systems that underpin people's living condition, movement and communication, we need power electronics converters to transfer electrical energy. For example, they can transfer almost constant voltage and current generated from a solar panel to the power grid, where the voltage and current are alternating polarities. They can also transfer alternating voltage from household power sockets to charge electric vehicles, smart phones and laptops, where the voltage of the batteries is almost constant. As the electricity is generated from a combination of sources (fossil fuel and renewable energy), the efficiency of the power electronics converters plays a vital role to reduce CO2 emission for Net Zero and sustainable development. The operation of the power electronics converters relies on the semiconductor transistors. A power electronics converter usually has 6 or more transistors. Each transistor works like a "switch" to turn on and off repeatedly following certain control patterns. When a transistor switches from one state to another, there is an overlap of voltage and current across it which causes power losses. If the efficiency of power electronics converters needs to be improved, each transistor's transition should be reduced. A recently developed transistor based on emerging gallium nitride (GaN) materials demonstrate the capability to transfer the kilowatt power during nanoseconds, which reduces the power losses more than 10 times in comparison to a traditional transistor based on silicon. However, the fast power transition comes with the challenge of the electromagnetic noise, which will propagate from one transistor to another, and from a high power circuit to a low power control circuit for control patterns generation. Consequently, the transistor will withstand higher voltage and current spikes that reduce their lifetime, and the low power circuit will generate wrong control patterns and make the whole converter fail to operate. Under the fast switching of GaN, the noise interference also reaches to a level that conventional approaches based on silicon transistors can no longer work. An ambitious target of the proposal is to reduce the noise interference by using a new design to connect multiple GaN transistors with their control circuits, and assemble them together in a power converter. We will first identify noise interference strength and polarity generated by each transistor, and then use the noise interference of the same strength but different polarities to cancel each other. Therefore, the total effective noise interference will reduce to almost zero in our proposed design, and power converter efficiency could be greatly improved. To achieve this ambitious design, a new partnership with French Ampere Lab will be developed and built via knowledge transfer and learning. The unique and global leading expertise of French Ampere Lab on 3D high-density packaging is crucial for the implementation of the design, and it will complement University of Nottingham team's expertise of power transistor application. Eventually, it will benefit UK and make UK a world leading role for emerging GaN power electronics technology that will underpin Net Zero and sustainable development.
在支撑人们生活条件、运动和通信的各种系统中,我们需要电力电子转换器来传输电能。例如,它们可以将太阳能电池板产生的几乎恒定的电压和电流传输到电网,其中电压和电流是交替极性的。它们还可以从家用电源插座传输交流电压,为电动汽车、智能手机和笔记本电脑充电,这些电池的电压几乎是恒定的。由于电力是由多种来源(化石燃料和可再生能源)产生的,电力电子转换器的效率对于减少二氧化碳排放、实现净零排放和可持续发展起着至关重要的作用。电力电子转换器的运行依赖于半导体晶体管。电力电子转换器通常有 6 个或更多晶体管。每个晶体管的工作原理就像一个“开关”,按照一定的控制模式重复打开和关闭。当晶体管从一种状态切换到另一种状态时,其两端的电压和电流会重叠,从而导致功率损耗。如果需要提高电力电子转换器的效率,则应减少每个晶体管的转换。最近开发的基于新兴氮化镓 (GaN) 材料的晶体管展示了在纳秒内传输千瓦功率的能力,与基于硅的传统晶体管相比,功率损耗降低了 10 倍以上。然而,快速功率转换带来了电磁噪声的挑战,电磁噪声将从一个晶体管传播到另一个晶体管,并从高功率电路传播到低功率控制电路以生成控制模式。因此,晶体管将承受更高的电压和电流尖峰,从而缩短其寿命,并且低功率电路将产生错误的控制模式并使整个转换器无法运行。在GaN的快速开关下,噪声干扰也达到了基于硅晶体管的传统方法无法工作的水平。该提案的一个雄心勃勃的目标是通过使用新设计将多个 GaN 晶体管与其控制电路连接起来,并将它们组装在功率转换器中,从而减少噪声干扰。我们首先识别每个晶体管产生的噪声干扰强度和极性,然后利用相同强度但不同极性的噪声干扰相互抵消。因此,在我们提出的设计中,总有效噪声干扰将减少到几乎为零,并且功率转换器的效率可以大大提高。为了实现这一雄心勃勃的设计,将通过知识转移和学习与法国安培实验室建立新的合作伙伴关系。法国安培实验室在3D高密度封装方面独特且全球领先的专业知识对于设计的实现至关重要,它将补充诺丁汉大学团队在功率晶体管应用方面的专业知识。最终,它将使英国受益,并使英国成为新兴氮化镓电力电子技术的世界领先者,该技术将支撑净零排放和可持续发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ke Li其他文献

The joint association of lipoprotein(a) and Lp-PLA2 with the risk of stroke recurrence
脂蛋白(a)和Lp-PLA2与卒中复发风险的联合关联
  • DOI:
    10.1016/j.jacl.2024.04.133
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Jing Xue;Yukun Xiang;Xue Jiang;A. Jin;Xiwa Hao;Ke Li;Jinxi Lin;Xia Meng;Hao Li;Lemin Zheng;Yongjun Wang;Jie Xu
  • 通讯作者:
    Jie Xu
Broadband RCS Reduction of Antenna with AMC Using Gradually Concentric Ring Arrangement
采用渐进同心环排列的 AMC 天线宽带 RCS 降低
Synthesis and anti-tumor activity of novel ethyl 3-aryl-4-oxo-3,3a,4,6-tetrahydro-1H-furo[3,4-c]pyran-3a-carboxylates.
新型3-芳基-4-氧代-3,3a,4,6-四氢-1H-呋喃[3,4-c]吡喃-3a-甲酸乙酯的合成和抗肿瘤活性。
  • DOI:
    10.1016/j.bmcl.2011.04.003
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Tiantian Wang;Jia Liu;Hanyu Zhong;Huan Chen;Zhiliang Lv;Yikai Zhang;Mingfeng Zhang;Dongping Geng;Chunjuan Niu;Yongmei Li;Ke Li
  • 通讯作者:
    Ke Li
Normalized Least Mean M-Estimate Algorithm with Switching Step-Sizes Against Impulsive Noises
具有针对脉冲噪声的切换步长的归一化最小均值 M 估计算法
Design of bird flight attitude and track signal recording system based on multi-sensor distribution
基于多传感器分布的鸟类飞行姿态与轨迹信号记录系统设计

Ke Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ke Li', 18)}}的其他基金

Transfer Optimisation System for Adaptive Automated Nature-Inspired Optimisation
用于自适应自动自然优化的传输优化系统
  • 批准号:
    MR/X011135/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Fellowship
Transfer Optimisation System for Adaptive Automated Nature-Inspired Optimisation
用于自适应自动自然优化的传输优化系统
  • 批准号:
    MR/S017062/1
  • 财政年份:
    2019
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Fellowship

相似国自然基金

视觉与语义融合的场景文字检测与识别技术研究
  • 批准号:
    62376266
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
  • 批准号:
    62373344
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
融合多源多态误差传递的复杂装备公差均衡创成机理
  • 批准号:
    52305285
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
虚实融合共生迭代驱动的离心叶轮健康状态与性能退化评估方法研究
  • 批准号:
    52305108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
代理模型融合与迁移的分布式数据驱动进化计算方法
  • 批准号:
    62376097
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: Ultra Broadband Fully Integrated GaN Front End Integrated Chip
EAGER:超宽带全集成GaN前端集成芯片
  • 批准号:
    2332167
  • 财政年份:
    2023
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Standard Grant
Development of GaN CMOS Monolithic Integrated Circuits Technology Using Crystal Hetero-Polarity Control
利用晶体异质性控制的GaN CMOS单片集成电路技术的开发
  • 批准号:
    22KK0055
  • 财政年份:
    2022
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
STTR Phase II: Integrated Gallium Nitride (GaN) Field Effect Transistor (FET)-Based High Density On Board Electric Vehichle (EV) Charger
STTR 第二阶段:基于集成氮化镓 (GaN) 场效应晶体管 (FET) 的高密度车载电动汽车 (EV) 充电器
  • 批准号:
    2052316
  • 财政年份:
    2022
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Cooperative Agreement
Gallium Nitride Smart Power Integrated Circuit Technology (GaN SPICe)
氮化镓智能功率集成电路技术(GaN SPICe)
  • 批准号:
    EP/V026577/1
  • 财政年份:
    2021
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Research Grant
Collaborative Research: High-frequency, High-power Amplifier Based on Distributed Coupling of GaN HEMTs Through a SiC Substrate-integrated Waveguide
合作研究:基于 SiC 衬底集成波导的 GaN HEMT 分布式耦合的高频、高功率放大器
  • 批准号:
    2132329
  • 财政年份:
    2021
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了