PAPIER - Plasma Assisted Printing of Metal Inks with Enhanced Resistivity

PAPIER - 具有增强电阻率的金属油墨的等离子辅助印刷

基本信息

  • 批准号:
    EP/Y001877/1
  • 负责人:
  • 金额:
    $ 20.94万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The move toward low-cost flexible electronics is one of the standout advancements of this century: printed electronics are integrated into every part of modern-day life, from light-emitting diodes, to solar cells and printed biosensors such as wearable electronics. However, as we move toward ever-lower processing temperatures in order to enable printing on paper, polymers or even skin, the technology is struggling to catch up. Thermal deposition techniques have their limitations, and the patterning of molten metals is incompatible with affordable flexible materials, including renewable eco-friendly plastics or paper. This mismatch is due, in part, to the high melting point of metals (often over a thousand degrees) which is in stark contrast to the deformation temperature of a range of plastic, paper or fabric materials (considerably lower approx. 100 - 200 degrees Celsius). Techniques currently used in the production of printed electronics are time-consuming and expensive multi step-techniques that require the use of toxic chemicals. These state-of-the-art techniques require metal flakes/particles to be 'melted' together, resulting in contaminants between layers, which reduce overall conductivity of the metal.The atmospheric-pressure and room-temperature printing of metallic coatings from a simple and scalable method is an unmet need of the ever-growing printed electronics market. With a few exceptions, conductive ink materials are dispersions of metallic nanoparticles. Nevertheless, these inks require sintering at temperatures which limits their widespread use (> 50 degrees celcius). In addition, the nanoparticles often clog inkjet printer nozzles upon coating. Metal-organic decomposition (MOD) inks provide an alternative to nanoparticle inks. The development of this technology could have profound benefits for many different scientific fields. This PAPIER project focusses on organometallic compounds, as opposed to nanoparticles, for use in MOD inks in an atmospheric-pressure plasma assisted printing process. The unique and unprecedented combination of MOD inks with plasma assisted printing will enable intricate patterned metallic surfaces to be produced on a large scale and on a range of substrates at atmospheric pressure and room temperature. Exhaustive surface characterizations will allow a deep understanding of mechanisms involved in the printing of MOD inks and promote the elaboration of other new functional metallic thin films.Typically ink formulations are optimized using mass screening and elimination of failures which means that there are no comprehensive studies dedicated to the fundamental chemistry involved. Consequently, there is an urgent need to explore this area further. The ability of the international collaborators at the LIST to avoid using thermal activation is crucial to the success of this project, highlighting the complementary and synergetic expertise of synthetic excellence and plasma deposition. This project aims to improve the performance of existing printing technologies. These would provide a tuneable alternative to the current industrial methods based on silver whose activation temperatures are too high for printing onto many materials.Both aluminium and copper are low cost, earth abundant, and conduct with as much effectiveness as silver. We will use our small molecules in the plasma printing of metals, which will be compatible with modern lower temperature deposition techniques. To reap the benefits of using printing techniques for device fabrication, inks that will transform at room temperatures (affording compatibility with low cost flexible materials) will be produced. This project will create a library of novel highly performing inks from aluminium and copper which can be printed and sintered in air on low cost flexible materials for incorporation into electronic devices.
向低成本柔性电子产品的发展是本世纪的突出进步之一:印刷电子产品已融入现代生活的各个部分,从发光二极管到太阳能电池和印刷生物传感器(例如可穿戴电子产品)。然而,当我们朝着更低的加工温度迈进,以便能够在纸张、聚合物甚至皮肤上进行打印时,这项技术正在努力追赶。热沉积技术有其局限性,并且熔融金属的图案与经济实惠的柔性材料不兼容,包括可再生环保塑料或纸张。这种不匹配的部分原因是金属的高熔点(通常超过一千度),这与一系列塑料、纸张或织物材料的变形温度(低得多约 100 - 200 度)形成鲜明对比。摄氏度)。目前用于生产印刷电子产品的技术是耗时且昂贵的多步骤技术,需要使用有毒化学品。这些最先进的技术需要将金属薄片/颗粒“熔化”在一起,从而导致层与层之间产生污染物,从而降低金属的整体电导率。金属涂层的大气压和室温印刷只需简单的操作即可可扩展的方法是不断增长的印刷电子市场的未满足的需求。除少数例外,导电油墨材料是金属纳米颗粒的分散体。然而,这些墨水需要在限制其广泛使用的温度下烧结(> 50 摄氏度)。此外,纳米粒子在涂覆时经常堵塞喷墨打印机喷嘴。金属有机分解 (MOD) 墨水提供了纳米粒子墨水的替代品。这项技术的发展可能会给许多不同的科学领域带来深远的好处。该 PAPIER 项目重点关注有机金属化合物(而不是纳米颗粒),用于大气压等离子辅助印刷工艺中的 MOD 墨水。 MOD 墨水与等离子辅助印刷的独特且前所未有的组合将能够在大气压和室温下在各种基材上大规模生产复杂的图案金属表面。详尽的表面表征将有助于深入了解 MOD 油墨印刷所涉及的机制,并促进其他新型功能性金属薄膜的研制。通常,油墨配方是通过大规模筛选和消除故障来优化的,这意味着没有专门的综合研究涉及到基础化学。因此,迫切需要进一步探索这一领域。 LIST 的国际合作者避免使用热活化的能力对于该项目的成功至关重要,凸显了卓越合成和等离子体沉积的互补和协同专业知识。该项目旨在提高现有印刷技术的性能。这些将为当前基于银的工业方法提供可调整的替代方案,银的活化温度太高,无法在许多材料上进行印刷。铝和铜成本低廉,地球资源丰富,并且与银一样有效。我们将在金属等离子印刷中使用我们的小分子,这将与现代低温沉积技术兼容。为了获得使用印刷技术进行设备制造的好处,将生产在室温下变形的油墨(提供与低成本柔性材料的兼容性)。该项目将创建一个由铝和铜制成的新型高性能油墨库,这些油墨可以在低成本柔性材料上在空气中印刷和烧结,以融入电子设备中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caroline Knapp其他文献

Caroline Knapp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Caroline Knapp', 18)}}的其他基金

Designer Aluminium Precursors for the Inkjet Printing of Electrical Circuits
用于喷墨印刷电路的设计师铝前驱体
  • 批准号:
    EP/V027611/1
  • 财政年份:
    2021
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Research Grant

相似国自然基金

共振磁扰动影响高密度等离子体边界湍流输运和辐射热不稳定性的研究
  • 批准号:
    12375218
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
分子印迹磁性有序多孔光子晶体微球等离子体3DSERS仿生芯片高通量检测谷物中的多元真菌毒素研究
  • 批准号:
    32372418
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
融合DNN的纳米光子结构型等离子体阵列片上编码高光谱成像技术研究
  • 批准号:
    62375269
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
托卡马克偏滤器等离子体脱靶与边界局域模相互作用机制研究
  • 批准号:
    12305252
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
嬗变元素铼(Re)对聚变装置钨面向等离子体材料服役性能的影响研究
  • 批准号:
    12305226
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: From Flamelet to Full-Scale: Advancing Plasma-Assisted Combustion for Low-Emission Sustainable Fuels
职业生涯:从小火焰到全面:推进低排放可持续燃料的等离子体辅助燃烧
  • 批准号:
    2339518
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Continuing Grant
Multifunctional sustainable adsorbents for water treatment assisted with plasma technologies and for health protection from xenobiotics
多功能可持续吸附剂,用于等离子体技术辅助的水处理和外源性健康保护
  • 批准号:
    EP/Y037170/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Research Grant
Theoretical Investigation and Design of Thermochemical and Plasma-Assisted Etching of Diamond Surfaces
金刚石表面热化学和等离子体辅助蚀刻的理论研究和设计
  • 批准号:
    23KJ1431
  • 财政年份:
    2023
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidating High Oral Fluid Exposure Mechanisms of Buprenorphine to Reduce Dental Caries
阐明丁丙诺啡的高口腔液暴露机制以减少龋齿
  • 批准号:
    10765181
  • 财政年份:
    2023
  • 资助金额:
    $ 20.94万
  • 项目类别:
Targeting neuronal transport to ameliorate vincristine neurotoxicity
靶向神经元运输以改善长春新碱神经毒性
  • 批准号:
    10736789
  • 财政年份:
    2023
  • 资助金额:
    $ 20.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了