Deterministic quantum gate between photons in a next-generation light-matter interface

下一代光-物质界面中光子之间的确定性量子门

基本信息

  • 批准号:
    EP/W035839/2
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Engineered nanoscale systems that provide access to the quantum properties of matter are heralding a revolution in physics and technology. Control over single quantum objects, such as a single electron or photon, and over interactions between them provides the means to engineer the correlations that make quantum technologies a revolutionary advance over their current counterparts. An interface between a stationary matter and a flying optical quantum bit (qubit) is a fundamental building block of the inter-connects that will make quantum technologies useful on a large scale. Solid-state devices have shown strongly coupled light-matter interfaces, efficient light collection, and quantum control of coherent matter nodes. Progress on fabrication techniques to enhance spin and optical coherence properties, combined with important theoretical efforts on modelling complex environments, have yielded significant gains in these areas. Indeed, recent demonstrations using optically addressable spins in semiconductors include a loophole-free test of Bell's inequalities, the generation of photonic states involved in measurement-based quantum computation, and the realisation of quantum internet primitives. Alongside ultracold atoms and superconducting circuits, such optically active solid-state platforms provide developments with distinct long-term advantages due to their ease of integration with combined classical optical and electrical elements. This project will put together a next-generation solid-state quantum networking node that combines the latest developments in the quantum optical research community -- optical device integration, all-optical electron spin control, and nuclear spin coherence and control -- to deliver a platform that outperforms other candidate technologies on the combined metrics of optical coherence and efficiency, quantum bit control, and quantum memory lifetime. This proposal consists of realising this combination by leveraging two recent breakthroughs in a system already known as the best single photon source - III-V semiconductor quantum dots: (1) open optical microcavities as a versatile interface to reach a strong light-matter coupling and high collection efficiency, and (2) strain-free GaAs quantum dots, as host for a coherent matter quantum bit, and on which preliminary measurements indicate a two orders of magnitude improvement in coherence time over the state of the art (InAs quantum dots). As a first major benchmark and the major deliverable of this proposal, a deterministic quantum gate will be performed between two photon qubits, leveraging the optical and spin coherence of this new generation of quantum dots. This proposal aims to reach beyond 1MHz entanglement rate between two photon qubits while achieving a few-percent error rate - a more than four orders of magnitude improvement of the rate-fidelity product over previous attempts in the optical domain. This will serve as a proof-of-concept to establish this platform as the optimal choice for investment towards large-scale arrays of quantum optical devices.Finally, developing this GaAs quantum dot platform promises to equip the leading commercial single-photon emitters with a long-lived nuclear-spin memory, the missing piece for this otherwise exquisite photonics platform. This addition would allow the demonstration of long-lived entanglement across distant quantum nodes, a crucial step en route to a quantum internet where such entanglement can be used as a resource for communication and computation.
工程纳米级系统可以提供物质的量子特性,预示着物理学和技术的革命。对单个量子物体(例如单个电子或光子)以及它们之间相互作用的控制提供了设计相关性的方法,使量子技术相对于当前的同类技术取得了革命性的进步。静止物质和飞行光学量子位(量子位)之间的接口是互连的基本构建块,这将使量子技术大规模应用。固态器件已显示出强耦合的光-物质界面、高效的光收集以及相干物质节点的量子控制。增强自旋和光学相干特性的制造技术的进展,加上复杂环境建模的重要理论努力,在这些领域取得了显着的成果。事实上,最近在半导体中使用光学可寻址自旋的演示包括贝尔不等式的无漏洞测试、基于测量的量子计算中涉及的光子态的生成以及量子互联网原语的实现。除了超冷原子和超导电路之外,这种光学活性固态平台由于易于与经典光学和电气元件相结合而集成,因此具有明显的长期优势。该项目将整合下一代固态量子网络节点,该节点结合了量子光学研究界的最新发展——光学器件集成、全光电子自旋控制以及核自旋相干和控制——以提供该平台在光学相干性和效率、量子比特控制和量子存储器寿命等综合指标上优于其他候选技术。该提案包括通过利用已知最好的单光子源 - III-V 半导体量子点系统中的两项最新突破来实现这种组合:(1)开放光学微腔作为通用接口,以实现强光-物质耦合和高收集效率,以及(2)无应变 GaAs 量子点,作为相干物质量子位的主体,初步测量表明相干时间比现有技术(InAs 量子点)提高了两个数量级。作为该提案的第一个主要基准和主要交付成果,将在两个光子量子位之间执行确定性量子门,利用新一代量子点的光学和自旋相干性。该提案的目标是在两个光子量子位之间达到超过 1MHz 的纠缠率,同时实现百分之几的错误率——与之前在光领域的尝试相比,速率保真度产品提高了四个数量级以上。这将作为概念验证,使该平台成为大规模量子光学器件阵列投资的最佳选择。最后,开发该 GaAs 量子点平台有望为领先的商业单光子发射器配备长寿命的核自旋存储器,是这个精致的光子平台所缺少的部分。这一添加将允许演示跨越遥远量子节点的长期纠缠,这是通往量子互联网的关键一步,在量子互联网中,这种纠缠可以用作通信和计算的资源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dorian Gangloff其他文献

Broadband Coding with Dynamic Synapses
使用动态突触的宽带编码
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Benjamin Lindner;Dorian Gangloff;André Longtin;John E. Lewis
  • 通讯作者:
    John E. Lewis

Dorian Gangloff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dorian Gangloff', 18)}}的其他基金

Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grant

相似国自然基金

基于单分子微纳调控的片上全同光子源及纠缠量子逻辑门
  • 批准号:
    12374349
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于轨道角动量的高维量子逻辑门研究
  • 批准号:
    62371202
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习的多体量子门近似分离、网络量子操控与非局域性识别及相关问题研究
  • 批准号:
    12271394
  • 批准年份:
    2022
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
囚禁离子系统中基于误差抑制逻辑门的量子模拟研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分子的量子纠缠和量子门
  • 批准号:
    92165206
  • 批准年份:
    2021
  • 资助金额:
    350 万元
  • 项目类别:
    重大研究计划

相似海外基金

NSF-NSERC: Building a two-qubit controlled phase gate using laterally coupled semiconductor quantum dots
NSF-NSERC:使用横向耦合半导体量子点构建两个量子位控制的相位门
  • 批准号:
    2317047
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Research on the control of photon-magnon coupling state by strong gate electric field
强栅极电场控制光子-磁振子耦合态的研究
  • 批准号:
    22KJ1956
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grant
Development of optically controlled spin gate using group III-nitrides quantum dots
使用III族氮化物量子点开发光控自旋门
  • 批准号:
    575333-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Alliance Grants
Development of optically controlled spin gate using group III-nitrides quantum dots
使用III族氮化物量子点开发光控自旋门
  • 批准号:
    575333-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了