Integration of low-carbon hydrogen value chains for hard-to-decarbonise sectors with wider energy systems: Whole-systems modelling and optimisation

将难以脱碳行业的低碳氢价值链与更广泛的能源系统整合:全系统建模和优化

基本信息

  • 批准号:
    EP/W033275/1
  • 负责人:
  • 金额:
    $ 31.73万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Low-carbon hydrogen has a crucial part to play in the UK's transition to net zero by 2050, complementing renewable electricity, and providing an alternative low-carbon energy source for sectors that are difficult to decarbonise. To kickstart a thriving low-carbon hydrogen economy, the UK Government has set a target capacity of 5 GW of hydrogen by 2030. This will require a rapid and large-scale deployment of generation capacity, infrastructures to support the delivery of the hydrogen to its end uses, and growing its demands. Switching energy-intensive industries to low-carbon hydrogen could help accelerate its uptake and provide a reliable demand to entice producers into the market. This is also the largest opportunity for reducing CO2 emissions: per tonne of hydrogen used, heavy industry can abate about 4 times as much CO2 as other sectors. Once the market has been established, this could trickle down to other sectors, such as heating in buildings and transport, particularly long distance and heavy duty, where battery vehicles are not well suited, helping to progress the UK towards net zero.Switching energy-intensive industries to hydrogen is an effective way of integrating hydrogen into the whole energy system. This project will investigate how this can be done: what the system requirements are as well as the benefits and impacts of doing so. First, we will understand how energy-intensive industries will perform technically, economically and environmentally if they switch to hydrogen, using steelmaking as an exemplar with a process known as Direct Reduction of Iron combined with Electric Arc Furnace, by building high-fidelity mathematical models of these processes. These will be compared with other decarbonisation options for steelmaking, such as efficiency improvements, retrofitting with carbon capture, storage and utilisation technologies, and using alternative reductants and fuels such as biomass.We will then explore the implications of integrating these processes and the value chains for supplying low-carbon hydrogen into the wider energy system. This requires a whole-system modelling approach that uses optimisation for the planning, design and operation of the overall system. The model includes a representation of the possible technologies, infrastructures and resources, and determines the optimal combination of these (what technologies and infrastructures to deploy, where and when, and how to operate them over time) in order to satisfy the demands for energy services and products, while satisfying constraints (e.g. environmental), to minimise an overall performance criterion (e.g. total costs or GHG emissions). We will use the whole-system model to answer the following questions.1. Can sufficient low-carbon hydrogen be produced in the UK for the steel industry? What is the optimal mix of green and blue hydrogen to minimise costs and environmental impacts? How much renewable energy will be needed?2. How to ramp up demands in low-carbon hydrogen and what are the roles that technologies could play in achieving the levels of production needed to meet the targets? How will the hydrogen value chains develop and expand?3. Once the energy-intensive industries, such as steel, have been decarbonised using hydrogen, which sectors should be decarbonised next?4. What are the impacts on the electricity network and the wider energy system? How much energy storage capacity will be needed and in what form?5. What are the costs and benefits of developing highly integrated industrial clusters from the start, and expanding the network by building more clusters and linking them, as opposed to developing less-integrated networks nationally and then gradually increasing their integration?6. What market frameworks and policies can be put in place to ensure that steel, and other products and energy services, produced from low-carbon hydrogen will be economically competitive, locally and internationally?
低碳氢在英国到2050年向净零过渡的过程中发挥着至关重要的作用,它补充了可再生电力,并为难以脱碳的行业提供了替代低碳能源。为了启动蓬勃发展的低碳氢经济,英国政府设定了到 2030 年氢气产能达到 5 吉瓦的目标。这将需要快速大规模部署发电能力和基础设施,以支持将氢气输送到英国。最终用途,以及不断增长的需求。将能源密集型产业转向低碳氢可能有助于加速其吸收,并提供可靠的需求来吸引生产商进入市场。这也是减少二氧化碳排放的最大机会:每使用一吨氢气,重工业可减少的二氧化碳量是其他行业的约 4 倍。一旦市场建立起来,这可能会渗透到其他行业,例如建筑供暖和运输,特别是长途和重型汽车,这些领域电池汽车不太适合,有助于英国迈向净零排放。集约化产业氢能是氢能融入整个能源体系的有效途径。该项目将研究如何做到这一点:系统要求是什么以及这样做的好处和影响。首先,我们将通过建立高保真数学模型,以炼钢工艺与电弧炉相结合的直接还原铁工艺为例,了解能源密集型产业如果转向氢能在技术、经济和环境方面的表现如何这些过程。这些将与炼钢的其他脱碳方案进行比较,例如效率提高、碳捕获、储存和利用技术改造,以及使用替代还原剂和燃料(例如生物质)。然后我们将探讨整合这些流程和价值链的影响为更广泛的能源系统提供低碳氢。这需要一种全系统建模方法,对整个系统的规划、设计和操作进行优化。该模型包括可能的技术、基础设施和资源的表示,并确定这些的最佳组合(部署哪些技术和基础设施、部署地点和时间以及随着时间的推移如何操作它们),以满足能源服务的需求和产品,同时满足约束(例如环境),以最大限度地降低总体绩效标准(例如总成本或温室气体排放)。我们将利用全系统模型来回答以下问题: 1.英国能否为钢铁行业生产足够的低碳氢?为了最大限度地降低成本和环境影响,绿氢和蓝氢的最佳组合是什么?需要多少可再生能源?2.如何增加低碳氢的需求?技术在实现目标所需的生产水平方面可以发挥哪些作用?氢价值链将如何发展和拓展?3.一旦钢铁等能源密集型行业使用氢气实现脱碳,接下来应该对哪些行业进行脱碳?4。对电网和更广泛的能源系统有何影响?需要多少储能容量以及以什么形式?5.从一开始就发展高度集成的产业集群,并通过建立更多集群并将它们连接起来来扩大网络,而不是在全国范围内发展集成度较低的网络,然后逐步提高其集成度,其成本和收益是什么?6。可以制定哪些市场框架和政策来确保由低碳氢生产的钢铁以及其他产品和能源服务在本地和国际上具有经济竞争力?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheila Samsatli其他文献

University of Birmingham H2FC SUPERGEN
伯明翰大学 H2FC SUPERGEN
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nigel Brandon;John Irvine;I. Metcalfe;Vladimir Molkov;Nilay Shah;Paul Dodds;Sheila Samsatli;Claire Thompson
  • 通讯作者:
    Claire Thompson
University of Birmingham H2FC SUPERGEN
伯明翰大学 H2FC SUPERGEN
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nigel Brandon;John Irvine;I. Metcalfe;Vladimir Molkov;Nilay Shah;Paul Dodds;Sheila Samsatli;Claire Thompson
  • 通讯作者:
    Claire Thompson
The curious case of the conflicting roles of hydrogen in global energy scenarios
  • DOI:
    10.1039/c9se00833k
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Christopher J. Quarton;Olfa Tlili;Lara Welder;Christine Mansilla;Herib Blanco;Heidi Heinrichs;Jonathan Leaver;Nouri J. Samsatli;Paul Lucchese;Martin Robinius;Sheila Samsatli
  • 通讯作者:
    Sheila Samsatli
Parametric analysis and optimization for exergoeconomic performance of a combined system based on solid oxide fuel cell-gas turbine and supercritical carbon dioxide Brayton cycle
固体氧化物燃料电池-燃气轮机与超临界二氧化碳布雷顿循环联合系统用能经济性能参数分析与优化
  • DOI:
    10.1016/j.enconman.2019.02.036
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Yunru Chen;Meng Wang;Vincenzo Liso;Sheila Samsatli;Nouri J Samsatli;Rui Jing;Jincan Chen;Ning Li;Yingru Zhao
  • 通讯作者:
    Yingru Zhao
The utilisation of cloud computing and remote sensing approach to assess environmental sustainability in Malaysia
利用云计算和遥感方法评估马来西亚的环境可持续性
  • DOI:
    10.1088/1755-1315/230/1/012109
  • 发表时间:
    2019-02-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. S. N. Shaharum;H. Shafri;Wan Azlina Wan Abdul Karim Ghani;Sheila Samsatli;Badronnisa Yusuf
  • 通讯作者:
    Badronnisa Yusuf

Sheila Samsatli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

疏水FexC基催化剂上合成气向C4~C16线性α-烯烃的低碳、定向转化机制
  • 批准号:
    22302149
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于技术预见的煤电企业低碳技术采纳决策机制与激励政策研究
  • 批准号:
    72374196
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
双碳目标下生态与低碳新城的“空间陷阱”形成机制与治理路径研究
  • 批准号:
    72304188
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
季节性水体层化的热带低纬海区陆源有机碳高效埋藏的调控机制研究:以泰国湾为例
  • 批准号:
    42376077
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
原位发酵强化短程反硝化/厌氧氨氧化污水低碳高效脱氮的作用机制与优化控制
  • 批准号:
    42377375
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Reliable Integration of Distributed Low-Carbon Energy Resources
分布式低碳能源的可靠整合
  • 批准号:
    DE230100046
  • 财政年份:
    2023
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Discovery Early Career Researcher Award
Integration of Digital Twin Technologies into Low Carbon Hydrogen Production Processes
将数字孪生技术集成到低碳氢气生产过程中
  • 批准号:
    2874187
  • 财政年份:
    2022
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Studentship
Integrated IoT Sensing and Edge Computing Coupled with a Bayesian Network Model for Exposure Assessment and Targeted Remediation of Vapor Intrusion
集成物联网传感和边缘计算与贝叶斯网络模型相结合,用于暴露评估和蒸汽入侵的针对性修复
  • 批准号:
    10352963
  • 财政年份:
    2022
  • 资助金额:
    $ 31.73万
  • 项目类别:
Exposure Characterization and Modeling Core
曝光表征和建模核心
  • 批准号:
    10652263
  • 财政年份:
    2022
  • 资助金额:
    $ 31.73万
  • 项目类别:
Low-carbon engineering framework for a resilient water network using renewable energy and storage integration
使用可再生能源和存储集成的弹性供水网络的低碳工程框架
  • 批准号:
    2599776
  • 财政年份:
    2021
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了