Process design of new reduced activation ferrite martensite (RAFM) steels for nuclear fusion reactors

核聚变反应堆用新型低活化铁素体马氏体(RAFM)钢的工艺设计

基本信息

  • 批准号:
    EP/X030652/1
  • 负责人:
  • 金额:
    $ 61.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

To achieve the UK zero carbon emission target by 2050, alternative energy generation with zero CO2 emission, such as wind, solar, and nuclear energy, is now the target of urgent development to completely replace the use of fossil fuels such as coal, oil, and natural gas. However, the widely used nuclear fission reactors have many issues, for example, the difficulty of nuclear waste treatment and storage and the risk of uncontrolled chain reactions. On the other hand, nuclear fusion energy has many potential advantages, for example, four times higher energy than fission, abundant hydrogen and its isotopes as the fuel, and the short lifespan of the radioactive waste products. However, the development of fusion reactors puts a high demand on materials, as these must withstand high energy levels, high transmutation rates, high temperatures, and high thermomechanical stresses. This brings major material design challenges and requires the design and development of superior materials, along with innovative, facile, manufacturing routes, especially for the first wall structures and breeder blanket of fusion reactors. The structure is not only irradiated by the plasma but also undergoes neutron bombardment from the plasma, as well as high loadings of helium and hydrogen, which causes serious damage to the structural materials. Currently, one of the potential materials designed for the first wall and blanket structures on the fusion reactors is the reduced activation ferritic/martensitic (RAFM) steels, due to the superior thermal conductivity, relatively low thermal expansion, and resistance to radiation-induced swelling and helium embrittlement, as well as the easy commercial process, compared to other materials. However, the properties of these RAFM steels restrict their maximum operating temperature to only 550C, which is much lower than the service temperature of 650C. Moreover, irradiation induces the hardening of these steels at lower service temperatures (250-350C) and embrittlement at high temperatures (450-550C), which also restricted their application. Thus, the 3rd generation oxide dispersion strengthened (ODS) RAFM steels have been developed through nanoparticle and ultra-fine grains, which successfully increase the operating temperature to 650C. However, the limitation of the ODS RAFM steels is the obvious difficulty in powder manufacturing at a sufficient scale to be used in the first wall and blanket structures in fusion reactors. ODS steels also have a problem with a high ductile to the brittle transition temperature. This severely limits their applicability. Thus, there is still an urgent need to develop new RAFM steels for the structure materials on fusion reactors with a service temperature of 650C and easy manufacturing to various scales and structures.In this project, according to ODS RAFM steels, the guiding principles of a fine structure and a high-temperature stable precipitate phase will be used to design new, processable, RAFM steels. For example, the intermetallic precipitates and carbonitrides, which have a lower coarsening rate than carbides at high temperatures, will be the target precipitates; these can be achieved through alloy design with corresponding heat treatment. Moreover, grain refinement can be achieved through the modification of the manufacturing process, for example, by using ausforming, which will produce an extremely high dislocation density. Subsequently, during heat treatment, these dislocations will form nanoscale subgrains through recovery and recrystallization. Thus, the ultimate goal of the research will be to produce new RAFM steels for supply to the spherical tokamak (STEP). This requires advances to allow materials selection between 2023 to 2025 and provision to produce net electricity from fusion in 2040. It will also support the UK to be the world leader in fusion materials design and develop this prominent position through cutting-edge research on groundbreaking material systems
为了达到英国零碳排放目标,到2050年,替代二氧化碳发射(例如风能,太阳能和核能)的替代能源产生现在是紧急开发的目标是完全取代使用化石燃料,例如煤炭,石油和天然气。但是,广泛使用的核裂变反应器有许多问题,例如,核废料处理和储存的难度以及不受控制的链反应的风险。另一方面,核融合能具有许多潜在的优势,例如,能量是裂变,丰富的氢及其同位素作为燃料的四倍,以及放射性废物产物的寿命短。但是,融合反应器的发展对材料的需求很高,因为这些必须承受高能级,高透射率,高温和高热机械应力。这带来了主要的材料设计挑战,并需要设计和开发优质材料,以及创新的,易于的制造路线,尤其是对于融合反应堆的第一壁结构和育种层覆盖物。该结构不仅被血浆照射,而且还会受到血浆中的中子轰击,以及氦气和氢的高负载,这对结构材料造成了严重破坏。目前,融合反应器上为第一壁和毯子结构设计的潜在材料之一是,由于有效的导热率,相对较低的热膨胀以及对辐射诱导的膨胀和氦气额的耐药性,与其他材料相比,激活铁素体/马氏体(RAFM)钢减少了。但是,这些RAFM钢的特性将其最大工作温度限制在仅550℃,远低于650c的使用温度。此外,辐照在较低的服务温度(250-350c)和高温(450-550C)下诱导这些钢的硬化,这也限制了它们的应用。因此,已经通过纳米颗粒和超细晶粒开发了第三代氧化物分散剂(ODS)RAFM钢,这些晶粒成功将工作温度成功提高到650c。但是,ODS RAFM钢的局限性是粉末制造的明显困难,足以在融合反应堆中使用在第一壁和毯子结构中。 ODS钢也存在较高的延性过渡温度的问题。这严重限制了他们的适用性。因此,迫切需要开发新的RAFM钢,用于融合反应器上的结构材料,其使用温度为650℃,并易于制造到各种规模和结构。例如,在高温下的金属间沉淀物和碳依思甲酸酯的变形速度低于碳化物。这些可以通过合金设计通过相应的热处理来实现。此外,可以通过使用Ausforming来修改制造过程来实现谷物的细化,这将产生极高的位错密度。随后,在热处理过程中,这些位错将通过恢复和重结晶形成纳米级亚细胞。因此,该研究的最终目标是生产新的RAFM钢,以供应球形Tokamak(步骤)。这需要允许在2023年至2025年之间进行材料的选择,并在2040年从融合中产生净电力。它还将支持英国成为融合材料设计的世界领导者,并通过对开创性材料系统的最先进的研究来发展这一重要位置

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng Gong其他文献

Bamboo Forest Mapping in China Using the Dense Landsat 8 Image Archive and Google Earth Engine
使用 Dense Landsat 8 图像档案和 Google Earth Engine 绘制中国竹林测绘
  • DOI:
    10.3390/rs14030762
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Shuhua Qi;Bin Song;Chong Liu;Peng Gong;Jin Luo;Meinan Zhang;Tianwei Xiong
  • 通讯作者:
    Tianwei Xiong
Spatial Scaling of Gross Primary Productivity Over Sixteen Mountainous Watersheds Using Vegetation Heterogeneity and Surface Topography
利用植被异质性和地表地形对十六个山地流域初级生产力总额进行空间尺度分析
  • DOI:
    10.1029/2020jg005848
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinyao Xie;Jing M. Chen;Peng Gong;Ainong Li
  • 通讯作者:
    Ainong Li
A CSMA-based approach for detecting composite data aggregate events with collaborative sensors in WSN
一种基于 CSMA 的方法,用于在 WSN 中使用协作传感器检测复合数据聚合事件
Class center attention network with spatial adaption for enhancing hepatic segments classification with low-visibility vascular
具有空间适应性的类中心注意网络,用于增强低可见度血管的肝段分类
  • DOI:
    10.1016/j.displa.2022.102151
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Yinli Tian;Peiwei Sun;Fei Xue;Ricardo Lambo;Meiyan Yue;Chao An;Songhui Diao;Jianping Lv;Yaoqin Xie;Peng Gong;Hailin Cao;Wenjian Qin
  • 通讯作者:
    Wenjian Qin
Two-component gel of a D–p–A–p–D carbazole donor and a fullerene acceptor
D-p-A-p-D 咔唑供体和富勒烯受体的双组分凝胶
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Qiuxia Xu;Peng Gong;Chong Qian;Zhenqi Zhang;Junhui Jia;Xin Zhao;Ran Lu;Aimin Ren;Tierui Zhang
  • 通讯作者:
    Tierui Zhang

Peng Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向新冠疫苗的仿生类病毒颗粒设计及肺部程序化递送研究
  • 批准号:
    82302064
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
新双功能木聚糖酶的底物识别催化机制研究及其理性设计
  • 批准号:
    32300041
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
靶向SARS-CoV-2主蛋白酶二聚体界面新位点变构抑制剂的设计、合成与活性评价
  • 批准号:
    22307067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
环氧水解酶催化分子间去对称化的新反应设计与机制研究
  • 批准号:
    32301277
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
靶向GLUT1诊疗一体化分子探针的设计及其用于改善乳腺癌新辅助治疗后保乳手术疗效的研究
  • 批准号:
    82372032
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目

相似海外基金

Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
  • 批准号:
    10552325
  • 财政年份:
    2023
  • 资助金额:
    $ 61.26万
  • 项目类别:
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
  • 批准号:
    10639904
  • 财政年份:
    2023
  • 资助金额:
    $ 61.26万
  • 项目类别:
Virtual drug screen reveals context-dependent inhibition of cardiomyocyte hypertrophy
虚拟药物筛选揭示了心肌细胞肥大的情境依赖性抑制
  • 批准号:
    10678351
  • 财政年份:
    2023
  • 资助金额:
    $ 61.26万
  • 项目类别:
Pulmonary Hypertension: State of the Art and Therapeutic Opportunities
肺动脉高压:最新技术和治疗机会
  • 批准号:
    10682118
  • 财政年份:
    2023
  • 资助金额:
    $ 61.26万
  • 项目类别:
Maternal Fetal Medicine Units Network: University of California, San Francisco
母胎医学单位网络:加州大学旧金山分校
  • 批准号:
    10682872
  • 财政年份:
    2023
  • 资助金额:
    $ 61.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了