Manufacturing by Design

设计制造

基本信息

  • 批准号:
    EP/W003333/1
  • 负责人:
  • 金额:
    $ 205.47万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

In highly engineered materials, microscale defects can determine failure modes at the compo-nent/system scale. While X-ray CT is unique in being able to image, find, and follow defects non-destructively at the microscale, currently it can only do so for mm sized samples. This currently presents a significant limitation for manufacturing design and safe life prediction where the nature and location of the defects are a direct consequence of the manufacturing process. For example, in additive manufacturing, the defects made when manufacturing a test-piece may be quite different from those in a three dimensionally complex additively manufactured engineering component. Similarly, for composite materials, small-scale samples are commonly not large enough to properly represent all the hierarchical scales that control structural behaviour. This collaboration between the European Research Radiation Facility (ESRF) and the National Research Facility for laboratory CT (NRF) will lead to a million-fold increase in the volume of material that can be X-ray imaged at micrometre resolution through the development and exploitation of a new beamline (BM18). Further, this unparalleled resolution for X-rays at energies up to 400keV enables high Z materials to be probed as well as complex environmental stages. This represents a paradigm shift allowing us to move from defects in sub-scale test-pieces, to those in manufactured components and devices. This will be complemented by a better understanding of how such defects are introduced during manufacture and assembly. It will also allow us to scout and zoom manufactured structures to identify the broader defect distribution and then to follow the evolution of specific defects in a time-lapse manner as a function of mechanical or environmental loads, to learn how they lead to rapid failure in service. This will help to steer the design of smarter manufacturing processes tailored to the individual part geometry/architecture and help to establish a digital twin of additive and composite manufacturing processes.Secondly, we will exploit high frame rate imaging on ID19 exploiting the increased flux available due to the new ESRF-extremely bright source upgrade to study the mechanisms by which defects are introduced during additive manufacture and how defects can lead to very rapid failures, such as thermal runaway in batteriesIn this project, we will specifically focus on additive manufacturing, composite materials manufacturing and battery manufacturing and the in situ and operando performance and degradation of such manufactured articles, with the capabilities being disseminated and made more widely available to UK academics and industry through the NRF. The collaboration will also lead to the development of new data handling and analysis processes able to handle the very significant uplift in data that will be obtained and will lead to multiple site collaboration on experiments in real-time. This will enable us to work together as a multisite team on projects thereby involving less travelling and off-setting some of the constraints on demanding experiments posed by COVID-19.
在高度工程化的材料中,微观缺陷可以确定组件/系统规模的故障模式。虽然 X 射线 CT 的独特之处在于能够在微观尺度上非破坏性地成像、发现和跟踪缺陷,但目前它只能针对毫米尺寸的样品进行此操作。目前,这对制造设计和安全寿命预测提出了重大限制,其中缺陷的性质和位置是制造过程的直接结果。例如,在增材制造中,制造测试件时产生的缺陷可能与三维复杂的增材制造工程部件中的缺陷有很大不同。同样,对于复合材料,小规模样本通常不够大,无法正确表示控制结构行为的所有层次尺度。欧洲研究辐射设施 (ESRF) 和国家实验室 CT 研究设施 (NRF) 之间的合作将通过开发和利用,使可在微米分辨率下进行 X 射线成像的材料体积增加百万倍。新光束线(BM18)。此外,能量高达 400keV 的 X 射线具有无与伦比的分辨率,能够探测高 Z 材料以及复杂的环境阶段。这代表了一种范式转变,使我们能够从小型测试件的缺陷转向制造的组件和设备中的缺陷。这将通过更好地理解制造和组装过程中如何引入此类缺陷来补充。它还将使我们能够侦察和缩放制造结构,以确定更广泛的缺陷分布,然后以延时方式跟踪特定缺陷随机械或环境载荷的变化,了解它们如何导致快速失效。服务。这将有助于指导针对各个零件几何形状/架构定制的更智能制造工艺的设计,并有助于建立增材和复合材料制造工艺的数字孪生。其次,我们将利用 ID19 上的高帧率成像,利用由于可用而增加的通量到新的 ESRF-极亮光源升级,以研究增材制造过程中引入缺陷的机制以及缺陷如何导致非常快速的故障,例如电池中的热失控。在这个项目中,我们将特别关注增材制造、复合材料制造和电池制造以及此类制成品的原位和操作性能和降解,这些功能通过 NRF 向英国学术界和工业界传播并更广泛地提供。此次合作还将导致新的数据处理和分析流程的开发,能够处理将获得的数据的显着提升,并将导致实时实验的多个站点协作。这将使我们能够作为一个多地点团队共同开展项目,从而减少出差,并抵消 COVID-19 对高要求实验造成的一些限制。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermoelectric magnetohydrodynamic control of melt pool flow during laser directed energy deposition additive manufacturing
激光定向能量沉积增材制造过程中熔池流动的热电磁流体动力学控制
  • DOI:
    http://dx.10.1016/j.addma.2023.103587
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Fan X
  • 通讯作者:
    Fan X
Additively manufactured high-energy-absorption metamaterials with artificially engineered distribution of bio-inspired hierarchical microstructures
增材制造的高能量吸收超材料,具有人工设计的仿生分层微结构分布
  • DOI:
    http://dx.10.1016/j.compositesb.2022.110345
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Gao Z
  • 通讯作者:
    Gao Z
Hardness variation in inconel 718 produced by laser directed energy deposition
激光定向能量沉积生产的 Inconel 718 的硬度变化
  • DOI:
    http://dx.10.1016/j.mtla.2022.101643
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Chechik L
  • 通讯作者:
    Chechik L
In situ characterisation of surface roughness and its amplification during multilayer single-track laser powder bed fusion additive manufacturing
多层单轨激光粉末床熔融增材制造过程中表面粗糙度的原位表征及其放大
  • DOI:
    http://dx.10.1016/j.addma.2023.103809
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Bhatt A
  • 通讯作者:
    Bhatt A
In situ correlative observation of humping-induced cracking in directed energy deposition of nickel-based superalloys
镍基高温合金定向能量沉积驼峰诱发裂纹的原位相关观察
  • DOI:
    http://dx.10.1016/j.addma.2023.103579
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Fleming T
  • 通讯作者:
    Fleming T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Withers其他文献

Dependence of dielectric behavior in BiFeO3 ceramics on intrinsic defects
BiFeO3 陶瓷介电行为对固有缺陷的依赖性
  • DOI:
    10.1016/j.jallcom.2012.06.110
  • 发表时间:
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Hua Ke;Wen Wang;Yuanbin Wang;Hongjun Zhang;Dechang Jia;Yu Zhou;Xuekun Lu;Philip Withers
  • 通讯作者:
    Philip Withers

Philip Withers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Withers', 18)}}的其他基金

RELIANCE: REaL-tIme characterization of ANisotropic Carbon-based tEchnological fibres, films and composites
可靠性:各向异性碳基技术纤维、薄膜和复合材料的实时表征
  • 批准号:
    EP/X026884/1
  • 财政年份:
    2023
  • 资助金额:
    $ 205.47万
  • 项目类别:
    Research Grant
Henry Royce Institute Core Capital Award
亨利·莱斯研究所核心资本奖
  • 批准号:
    EP/X52850X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 205.47万
  • 项目类别:
    Research Grant
Royce Phase 2
罗伊斯二期
  • 批准号:
    EP/X527257/1
  • 财政年份:
    2022
  • 资助金额:
    $ 205.47万
  • 项目类别:
    Research Grant
Tomographic Imaging: UK Collaborative Computational Projects
断层成像:英国协作计算项目
  • 批准号:
    EP/T026677/1
  • 财政年份:
    2020
  • 资助金额:
    $ 205.47万
  • 项目类别:
    Research Grant
The Royce: Capitalising on the investment
罗伊斯:利用投资
  • 批准号:
    EP/S019367/1
  • 财政年份:
    2018
  • 资助金额:
    $ 205.47万
  • 项目类别:
    Research Grant
Preventing Surface Degradation in Demanding Environments
防止严苛环境中的表面退化
  • 批准号:
    EP/R00496X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 205.47万
  • 项目类别:
    Research Grant
A Reconstruction Toolkit for Multichannel CT
多通道 CT 重建工具包
  • 批准号:
    EP/P02226X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 205.47万
  • 项目类别:
    Research Grant
Sir Henry Royce InsStitute - recurrent grant
亨利·莱斯爵士学院 - 经常性资助
  • 批准号:
    EP/R00661X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 205.47万
  • 项目类别:
    Research Grant
Tomographic Imaging
断层成像
  • 批准号:
    EP/M022498/1
  • 财政年份:
    2015
  • 资助金额:
    $ 205.47万
  • 项目类别:
    Research Grant
Next Generation Multi-Dimensional X-Ray Imaging
下一代多维 X 射线成像
  • 批准号:
    EP/M010619/1
  • 财政年份:
    2015
  • 资助金额:
    $ 205.47万
  • 项目类别:
    Research Grant

相似国自然基金

全球价值链视角下中国式装备制造业空心化的形成机理与突破路径研究
  • 批准号:
    71373121
  • 批准年份:
    2013
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
第四方运作环境下面向复杂制造服务系统的自组织设计与组建
  • 批准号:
    51205353
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
产品设计、流程设计与供应链设计的决策协调:基于汽车制造业的研究
  • 批准号:
    70802044
  • 批准年份:
    2008
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
制造业六西格玛设计方法和应用研究
  • 批准号:
    70572044
  • 批准年份:
    2005
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目
制造业企业生产战略及其实施监控研究
  • 批准号:
    79800020
  • 批准年份:
    1998
  • 资助金额:
    9.3 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
  • 批准号:
    2593424
  • 财政年份:
    2025
  • 资助金额:
    $ 205.47万
  • 项目类别:
    Studentship
FMSG: Cyber: Learning Foundation Models for Manufacturing Design Automation
FMSG:网络:制造设计自动化的学习基础模型
  • 批准号:
    2328032
  • 财政年份:
    2024
  • 资助金额:
    $ 205.47万
  • 项目类别:
    Standard Grant
FMSG: Cyber: Learning Foundation Models for Manufacturing Design Automation
FMSG:网络:制造设计自动化的学习基础模型
  • 批准号:
    2328032
  • 财政年份:
    2024
  • 资助金额:
    $ 205.47万
  • 项目类别:
    Standard Grant
ASD3MAP: Amorphous Solid Dispersion Digital Design and Manufacturing Platform for rapid and resource-efficient development of bioavailable medicines
ASD3MAP:非晶固体分散体数字设计和制造平台,用于快速、资源高效地开发生物可利用药物
  • 批准号:
    10078996
  • 财政年份:
    2023
  • 资助金额:
    $ 205.47万
  • 项目类别:
    Collaborative R&D
The Neurospan Bridge: A Device for Peripheral Nerve Repair
Neurospan 桥:一种用于周围神经修复的装置
  • 批准号:
    10515280
  • 财政年份:
    2023
  • 资助金额:
    $ 205.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了