InspiringFuture - Bioinspired nanoengineering of robust films: Multifunctional interfaces for enabling a sustainable future
InspiringFuture - 坚固薄膜的仿生纳米工程:实现可持续未来的多功能接口
基本信息
- 批准号:EP/X023974/1
- 负责人:
- 金额:$ 219.62万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Scientific breakthroughs into surfaces/interfaces with high overall durability are critical to meet humanity's aspirations for sustainable development. With this context, I seek to undertake fundamental research to nanoengineer new bioinspired liquid-repellent films featuring resistance to sustained high-speed impact, fatigue and continuous flow (shear). My specific objectives are to:1) nanoengineer robust and flexible films with amphiphobicity (i.e. repellence to water and low surface tension liquid) built through thickness2) nanoengineer multi-layered amphiphobic film with mechanical anisotropy and energy dissipative mechanisms for impact/fatigue tolerance3) develop new insights into visco-elasto-plastic failure of the amphiphobic films using electron microscopy integrated nanomechanical tests and exploit them to engineer robust piezocatalytic films 4) perform first high-speed (~350 m/s) liquid/solid particle impact experiments on robust amphiphobic films, demonstrate their anti-icing, anti-scaling and optical transparency potential and to exploit robust piezocatalytic films to introduce continuous flow water remediation for pollution and disease control.The proposed protective nanoengineered films offer a substrate-independent solution for impact/erosion issues that plague transport systems, wind-turbines and offshore installations, and infrastructure exposed to harsh weather. These applications will also benefit from passive anti-icing/scaling potential of our films. With optical transparency, the films may prevent contamination of windows/windshields and handheld devices (e.g. phones/tablets). Furthermore, the piezocatalytic films may be retrofit to industrial/domestic pipes to enable continuous water remediation - this will reduce water waste and the antimicrobial resistance (AMR) burden, and potentially save millions of lives/year. Overall, the fellowship will contribute to sustainable development and meeting the European Green Deal targets.
具有较高整体耐用性的表面/界面的科学突破对于满足人类对可持续发展的愿望至关重要。在这种情况下,我试图对纳米工程师进行基础研究,以抗持续的高速冲击,疲劳和连续流动(剪切)具有抵抗力。我的具体目的是:1)通过厚度构建的纳米工程稳健和灵活的电影(即对水和低表面张力液体的排斥)2)纳米发动机多层次的两亲性薄膜机械性膜和能量耗散机制,以影响/疲劳的能力 - 从 amphiphobic films using electron microscopy integrated nanomechanical tests and exploit them to engineer robust piezocatalytic films 4) perform first high-speed (~350 m/s) liquid/solid particle impact experiments on robust amphiphobic films, demonstrate their anti-icing, anti-scaling and optical transparency potential and to exploit robust piezocatalytic films to introduce continuous flow为污染和疾病控制的水修复。拟议的保护性纳米工程膜提供了与底物无关的撞击/侵蚀问题的解决方案,这些解决方案会困扰着运输系统,风力驾驶器和海上装置以及暴露于恶劣天气的基础设施。这些应用还将受益于我们电影的被动抗冰/缩放潜力。具有光学透明度,这些膜可能会防止窗户/挡风玻璃和手持设备(例如电话/平板电脑)污染。此外,压电膜可以改造为工业/家用管道以实现连续的水补救 - 这将减少水废物和抗菌耐药性(AMR)负担,并有可能挽救数百万的生命/年。总体而言,奖学金将有助于可持续发展并实现欧洲绿色交易目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manish K. Tiwari其他文献
Tyr320 is a molecular determinant of the catalytic activity of β-glucosidase from <em>Neosartorya fischeri</em>
- DOI:
10.1016/j.ijbiomac.2020.02.117 - 发表时间:
2020-05-15 - 期刊:
- 影响因子:
- 作者:
Ramasamy Shanmugam;In-Won Kim;Manish K. Tiwari;Hui Gao;Primata Mardina;Devashish Das;Anurag Kumar;Marimuthu Jeya;Sang-Yong Kim;Young Sin Kim;Jung-Kul Lee - 通讯作者:
Jung-Kul Lee
Manish K. Tiwari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manish K. Tiwari', 18)}}的其他基金
Nanomanufacturing of Surfaces for Energy Efficient Icing Suppression
用于节能结冰的表面纳米制造
- 批准号:
EP/N006577/1 - 财政年份:2015
- 资助金额:
$ 219.62万 - 项目类别:
Research Grant
相似国自然基金
生物碱结构启发的核酸脂质递药系统及其多维协同脑靶向研究
- 批准号:82373808
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
皮肤启发的原位成型低溶胀水凝胶可控缓释莲子心生物碱重编程肿瘤相关巨噬细胞的研究
- 批准号:82305052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生源启发的二倍半萜 Bipolarolides A–D的集群式合成研究
- 批准号:22371102
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
生物启发的NiTi/TC4可变内流道颤振抑制机理及激光选区熔化成形研究
- 批准号:52275332
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
生物视觉机制启发的图像感知模型与非匀表面视觉检测方法
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Bioinspired 2D nanocatalysts for inorganic nitrogen cycle
用于无机氮循环的仿生二维纳米催化剂
- 批准号:
DE240101045 - 财政年份:2024
- 资助金额:
$ 219.62万 - 项目类别:
Discovery Early Career Researcher Award
Maneuvering Bioinspired Soft Microrobots in Anisotropic Complex Fluids
在各向异性复杂流体中操纵仿生软微型机器人
- 批准号:
2323917 - 财政年份:2024
- 资助金额:
$ 219.62万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Bioinspired Multispectral Imaging Technology for Intraoperative Cancer Detection
NSF 融合加速器轨道 M:用于术中癌症检测的仿生多光谱成像技术
- 批准号:
2344460 - 财政年份:2024
- 资助金额:
$ 219.62万 - 项目类别:
Standard Grant
ERI: Free surface and flexibility effects in partially-submerged bioinspired propulsion
ERI:部分浸没仿生推进中的自由表面和灵活性效应
- 批准号:
2347477 - 财政年份:2024
- 资助金额:
$ 219.62万 - 项目类别:
Standard Grant
CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
- 批准号:
2338752 - 财政年份:2024
- 资助金额:
$ 219.62万 - 项目类别:
Standard Grant