FINER: Future thermal Imaging with Nanometre Enhanced Resolution

FINER:具有纳米增强分辨率的未来热成像

基本信息

  • 批准号:
    EP/V057626/1
  • 负责人:
  • 金额:
    $ 88.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The ever-increasing combined carbon footprint of information and communications technology (ICT) is unsustainable - more efficient devices must be developed. Thermal characterisation, which feeds into design optimisation, is one of the key steps for ensuring the efficiency and reliable operation of the new electronic devices being developed. However, accurately measuring the temperature of leading-edge electronic devices is becoming increasingly difficult or impossible because of their small size, and that is the challenge addressed in this proposal. Wide bandgap electronic devices including GaN have great proven potential for the next generation of sustainable ICT and power electronics, contributing to the needed carbon emissions reduction. Miniaturization is one of the routes to further increase the efficiency and performance of wide bandgap electronic devices, decreasing the active region size to <200 nm, similar to the technology pathway that silicon (Si) electronics has taken, using concepts such as the FinFET. Thermal management, which is the efficient extraction of waste heat from the active part of the device, is especially important for achieving efficient reliable nanoscale electronic devices; thermal resistance increases as they are "scaled" to nanometre dimensions because of a thermal conductivity reduction and heat confinement in 3-D device structures, e.g. in a fin shape. While self-heating can be mitigated reasonably easily for lower power density Si FinFETs, it is potentially a significant roadblock for "scaled" wide bandgap devices which operate at enormous power densities. However there is currently no thermal imaging technique with a sufficiently high spatial resolution (e.g. Raman thermography has a diffraction limited resolution of about 0.5 micrometer, >10x the hotspot size) to be able to accurately measure the hotspot temperature of these novel nanoscale wide bandgap electronic devices. Instead we currently rely on complex electrothermal models to estimate the temperature of nanoscale devices, with inherent uncertainties - measurement is needed.A step change is required, namely a sub diffraction limit (super resolution) thermal imaging technique, which is addressed by the Future thermal Imaging with Nanometre Enhanced Resolution (FINER) project. We will develop a transformative nano quantum dot based thermal imaging (nQTI) technique to deliver nanometre resolution thermal imaging for the first time. To demonstrate the newly developed technique our application focus is on scaled wide bandgap electronic devices supplied by our national and international partners, however this technique will be widely applicable. Quantum dots are ideal for this application: They can be deposited as a nm-thickness film on the surface of the device being tested, and the emission colour is temperature dependent, which is what we exploit for thermal imaging. Structured Illumination Microscopy (SIM) and Stimulated Emission Depletion (STED) super-resolution techniques which were originally developed for fluorescence microscopy, but are presently unsuitable for thermal imaging, will be exploited to achieve a resolution as small as 50nm for nQTI. nQTI will enable nano-scale electrothermal models to be developed and experimentally verified. Accurate models will further our understanding of nano-scale self-heating and heat diffusion, feeding back into improved device designs and novel thermal management solutions. This work will be done at the Centre for Device Thermography and Reliability (CDTR) which has an international reputation for being at the forefront of high spatial and temporal resolution thermal imaging, pioneering Raman thermography. This expertise makes the CDTR ideally placed to deliver this project successfully. The generous industrial support for this programme demonstrates that there is a great need for this and their belief in our ability to successfully deliver it.
信息和通信技术 (ICT) 不断增加的综合碳足迹是不可持续的 - 必须开发更高效的设备。热特性分析有助于设计优化,是确保正在开发的新型电子设备高效和可靠运行的关键步骤之一。然而,由于尖端电子设备的尺寸较小,精确测量其温度变得越来越困难或不可能,这就是本提案要解决的挑战。事实证明,包括 GaN 在内的宽带隙电子器件在下一代可持续 ICT 和电力电子领域具有巨大潜力,有助于减少所需的碳排放。小型化是进一步提高宽带隙电子器件效率和性能的途径之一,将有源区域尺寸减小至 <200 nm,类似于硅 (Si) 电子器件采用 FinFET 等概念所采用的技术路径。热管理,即从设备的有源部分有效提取废热,对于实现高效可靠的纳米级电子设备尤为重要;由于热导率降低和 3-D 器件结构(例如器件)中的热限制,热阻随着它们“缩放”到纳米尺寸而增加。呈鳍状。虽然对于较低功率密度的 Si FinFET 来说,自热可以很容易地得到缓解,但对于在巨大功率密度下运行的“规模化”宽带隙器件来说,它可能是一个重大障碍。然而,目前还没有具有足够高空间分辨率的热成像技术(例如拉曼热成像的衍射极限分辨率约为0.5微米,>热点尺寸的10倍)能够精确测量这些新型纳米级宽带隙电子器件的热点温度设备。相反,我们目前依靠复杂的电热模型来估计纳米级器件的温度,具有固有的不确定性 - 需要测量。需要一个阶跃改变,即亚衍射极限(超分辨率)热成像技术,这是由未来热成像技术解决的纳米增强分辨率成像 (FINER) 项目。我们将开发一种变革性的基于纳米量子点的热成像(nQTI)技术,首次提供纳米分辨率的热成像。为了演示新开发的技术,我们的应用重点是由我们的国内和国际合作伙伴提供的按比例缩放的宽带隙电子器件,但该技术将广泛适用。量子点非常适合这种应用:它们可以作为纳米厚度的薄膜沉积在被测试设备的表面上,并且发射颜色与温度相关,这就是我们在热成像中所利用的。结构照明显微镜 (SIM) 和受激发射损耗 (STED) 超分辨率技术最初是为荧光显微镜开发的,但目前不适用于热成像,将用于为 nQTI 实现小至 50 nm 的分辨率。 nQTI 将实现纳米级电热模型的开发和实验验证。准确的模型将进一步加深我们对纳米级自加热和热扩散的理解,反馈到改进的设备设计和新颖的热管理解决方案中。这项工作将在设备热成像和可靠性中心 (CDTR) 完成,该中心因处于高空间和时间分辨率热成像领域的前沿而享有国际声誉,开创了拉曼热成像技术。这种专业知识使 CDTR 成为成功交付该项目的理想选择。工业界对该计划的慷慨支持表明了对此的巨大需求以及他们对我们成功实现该计划的能力的信心。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Kuball其他文献

Siと接合したダイヤモンド基板上のFETの作製
在与 Si 结合的金刚石基底上制造 FET
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    神田 進司;山條 翔二;Martin Kuball;重川 直輝;梁 剣波
  • 通讯作者:
    梁 剣波
Gallium Nitride distributed Bragg Reflector cavity for integrated photonics applications
用于集成光子学应用的氮化镓分布式布拉格反射腔
Raman scattering and photoluminescence studies on Si/SiO2 superlattices
Si/SiO2超晶格的拉曼散射和光致发光研究
  • DOI:
    10.1063/1.1371001
  • 发表时间:
    2001-06-08
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. Benyoucef;Martin Kuball;JM Sun;GZ Zhong;XW Fan
  • 通讯作者:
    XW Fan
Impact of diamond seeding on the microstructural properties and thermal stability of GaN-on-diamond wafers for high-power electronic devices
金刚石晶种对高功率电子器件用金刚石基氮化镓晶圆的微观结构特性和热稳定性的影响
  • DOI:
    10.1016/j.scriptamat.2016.10.006
  • 发表时间:
    2017-02-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Dong Liu;D. Francis;F. Faili;C. Middleton;Julian Anaya;J. Pomeroy;D. Twitchen;Martin Kuball
  • 通讯作者:
    Martin Kuball
AlGaN/GaN superlattice-based multichannel RF transistors for high linearity and reliability: a simplified simulation approach
基于 AlGaN/GaN 超晶格的多通道射频晶体管,具有高线性度和可靠性:简化的仿真方法
  • DOI:
    10.1088/1361-6641/acd271
  • 发表时间:
    2023-05-04
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Akhil Kumar Shaji;M. Uren;J. Parke;G. Henry;R. Howell;Martin Kuball
  • 通讯作者:
    Martin Kuball

Martin Kuball的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Kuball', 18)}}的其他基金

Ultrawide Bandgap AlGaN Power Electronics - Transforming Solid-State Circuit Breakers (ULTRAlGaN)
超宽带隙 AlGaN 电力电子 - 改造固态断路器 (ULTRAlGaN)
  • 批准号:
    EP/X035360/1
  • 财政年份:
    2024
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
Transforming Net Zero with Ultrawide Bandgap Semiconductor Device Technology (REWIRE)
利用超宽带隙半导体器件技术 (REWIRE) 改造净零
  • 批准号:
    EP/Z531091/1
  • 财政年份:
    2024
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
  • 批准号:
    EP/W034751/1
  • 财政年份:
    2023
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
Van der Waals Ga2O3 functional materials epitaxy: Revolutionary power electronics
范德华 Ga2O3 功能材料外延:革命性的电力电子学
  • 批准号:
    EP/X015882/1
  • 财政年份:
    2023
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications
ECCS-EPSRC - 用于毫米波下一代无线通信的先进 III-N 器件和电路架构
  • 批准号:
    EP/X012123/1
  • 财政年份:
    2023
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
Materials and Devices for Next Generation Internet (MANGI)
下一代互联网材料和设备(MANGI)
  • 批准号:
    EP/R029393/1
  • 财政年份:
    2018
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
Sub-micron 3-D Electric Field Mapping in GaN Electronic Devices
GaN 电子器件中的亚微米 3D 电场测绘
  • 批准号:
    EP/R022739/1
  • 财政年份:
    2018
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
Integrated GaN-Diamond Microwave Electronics: From Materials, Transistors to MMICs
集成 GaN-金刚石微波电子器件:从材料、晶体管到 MMIC
  • 批准号:
    EP/P00945X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
Quantitative non-destructive nanoscale characterisation of advanced materials
先进材料的定量无损纳米级表征
  • 批准号:
    EP/P013562/1
  • 财政年份:
    2017
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
High Performance Buffers for RF GaN Electronics
适用于 RF GaN 电子器件的高性能缓冲器
  • 批准号:
    EP/N031563/1
  • 财政年份:
    2016
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant

相似国自然基金

北极极端高温事件对多年冻土区活动层水热状况和融化过程的影响及其未来变化预估
  • 批准号:
    42376255
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于机器学习的未来多情景下城市夏季热环境预测研究
  • 批准号:
    42305205
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中国干旱半干旱区生态系统碳源/汇对地表水热条件变化的响应机制及未来趋势分析
  • 批准号:
    42361024
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中亚地区未来灌溉模式转变对区域水热格局的影响
  • 批准号:
    42105118
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
IPCC未来情景下人为热释放对我国极端天气气候的影响研究
  • 批准号:
    42175046
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Advancing understanding of interannual variability and extreme events in the thermal structure of large lakes under historical and future climate scenarios
增进对历史和未来气候情景下大型湖泊热结构的年际变化和极端事件的了解
  • 批准号:
    2319044
  • 财政年份:
    2024
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Standard Grant
Microglia-Mediated Astrocyte Activation in the Acute-to-Chronic Pain Transition
小胶质细胞介导的星形胶质细胞激活急性向慢性疼痛的转变
  • 批准号:
    10639281
  • 财政年份:
    2023
  • 资助金额:
    $ 88.06万
  • 项目类别:
Harnessing the therapeutic potential of histotripsy focused ultrasound-induced immunogenic cancer cell death
利用组织解剖聚焦超声诱导免疫原性癌细胞死亡的治疗潜力
  • 批准号:
    10654919
  • 财政年份:
    2023
  • 资助金额:
    $ 88.06万
  • 项目类别:
Feasibility of artesunate to improve HPV and cervical precancer treatment outcomes among HIV positive women in LMICs
青蒿琥酯改善中低收入国家 HIV 阳性女性 HPV 和宫颈癌前治疗结果的可行性
  • 批准号:
    10762866
  • 财政年份:
    2023
  • 资助金额:
    $ 88.06万
  • 项目类别:
A clinical platform for ultrasound-augmented laparoscopy
超声增强腹腔镜临床平台
  • 批准号:
    10586776
  • 财政年份:
    2023
  • 资助金额:
    $ 88.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了