Key-hole mining: engineering solutions towards zero-waste anodic electro-oxidation of green technology metals from sulphidic ores (ZERO-electro)
钥匙孔采矿:从硫化矿石中对绿色技术金属进行零废物阳极电氧化的工程解决方案(零电)
基本信息
- 批准号:EP/X01858X/1
- 负责人:
- 金额:$ 25.72万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Metals are essential components of almost all modern technology. Amongst these are the emerging technologies on which we are depending to tackle the Climate Emergency: electric motors, batteries, transformers, photovoltaic panels and catalysts, just to name a few. Consequently, demand for 'green technology metals' (including Ni, Cu, Pd and Co) is surging, and is projected over the next 25 years, to eclipse the total for all previous human history. Recycling can only deliver a fraction of the supply. Even for metals such as Co, for which it is as high as 70%, it only accounts for 30% of demand. For metals which are more difficult to recycle, including Se, In and V, it remains <1%. It is therefore clear that the continued health and prosperity of both humankind and the natural environment depend on a huge increase in sustainable metal mining this Century.Despite such urgency, our methodology for the extraction of metals from the subsurface hasn't changed since the inception of metal mining which marked the beginning of the Bronze Age; we still "dig up" the raw materials. This results in environmental damage on a truly global scale. Therefore, whilst the metals extracted may be used to build 'green technologies' the nature of their extraction, via energy intensive digging, haulage and crushing, means that there is considerable "embedded carbon" in all metal products. This is hampering our ability to address the Climate Emergency. In fact, the situation is presently worsening, because as the near-surface ore deposits are being exhausted we are resorting to digging deeper into the subsurface (>1km depth in some cases) to reach them. The massive energy consumption involved is raising the degree of embedded carbon in humanity's metal supply, just at the time when we need urgently to reduce it. This is a global problem but also one which is important for the UK. Burgeoning demand for green technology metals coupled with various shifts in geopolitical conditions have dictated that metal mining is back on the UK political agenda. The prospect of a mining renaissance, however, has attracted scrutiny from the general public who have expressed concerns that it will compound and reproduce the social and ecological damage that has been associated with extractive activities in the past. Indeed, the high population density of the UK and Europe demands radical new thinking into what technology is appropriate for the extraction of our metal resources. We need radical new thinking in how we extract metals from the subsurface.This project seeks an entirely new approach to metal mining. In particular we will investigate the use of electricity and a suitable electrolyte (liquid that can carry dissolved metal ions) to decompose a metal-bearing ore deposit (to yield the desired metal) whilst it remains buried in the subsurface. Fundamental electrochemical theory suggests that this may be possible only using only a modest energy supply (i.e. of the same order of magnitude as can be supplied using a modest-sized array of solar panels). The metal laden electrolyte fluid will then be pumped to the surface. We anticipate that this new method would be particularly applicable for an important class of minerals that comprise metals bonded with reduced sulfur, known as the sulfides. These are noteworthy for their ability to conduct electricity, which is a critical requirement. The sulfides are widely regarded as the most important type of ore and currently supply approximately >80% of all Cu, >70% of all Co, >60% of all Ni, >95% of all Zn and >99% of all platinum group metals. This project will provide the fundamental "proof of concept" data for this radically new approach to metal mining. We anticipate several technical challenges, however if we are successful, then we could unlock an entirely new sustainable future.
金属是几乎所有现代技术的重要组成部分。其中包括我们应对气候紧急情况所依赖的新兴技术:电动机、电池、变压器、光伏板和催化剂等等。因此,对“绿色技术金属”(包括镍、铜、钯和钴)的需求激增,预计在未来 25 年,将超过人类历史上的总需求。回收只能提供供应的一小部分。即使是钴等高达70%的金属,也只占需求量的30%。对于较难回收的金属,包括 Se、In 和 V,其比例保持在 <1%。因此,很明显,人类和自然环境的持续健康和繁荣取决于本世纪可持续金属开采的大幅增长。尽管如此紧迫,但我们从地下提取金属的方法自一开始就没有改变金属开采标志着青铜时代的开始;我们还是“挖”原料。这导致了真正的全球范围内的环境破坏。因此,虽然提取的金属可用于构建“绿色技术”,但通过能源密集型挖掘、运输和破碎提取的性质意味着所有金属产品中都存在大量“嵌入碳”。这阻碍了我们应对气候紧急情况的能力。事实上,目前情况正在恶化,因为随着近地表矿藏的枯竭,我们不得不向地下更深的地方(在某些情况下> 1公里深度)挖掘来获取它们。所涉及的大量能源消耗正在提高人类金属供应中的碳含量,而此时我们迫切需要减少碳含量。这是一个全球性问题,但对英国来说也很重要。对绿色技术金属的需求不断增长,加上地缘政治条件的各种变化,决定金属开采重新回到英国政治议程上。然而,采矿业复兴的前景引起了公众的关注,他们担心这将加剧和再现过去与采掘活动相关的社会和生态破坏。事实上,英国和欧洲的高人口密度需要彻底的新思维来思考什么技术适合提取我们的金属资源。关于如何从地下提取金属,我们需要彻底的新思维。该项目寻求一种全新的金属开采方法。特别是,我们将研究使用电力和合适的电解质(可以携带溶解的金属离子的液体)来分解含金属矿床(以产生所需的金属),同时将其埋在地下。基本电化学理论表明,这可能仅使用适度的能源供应(即与使用适度尺寸的太阳能电池板阵列提供的能源数量级相同)。然后,充满金属的电解液将被泵送到地面。我们预计这种新方法将特别适用于一类重要的矿物,这些矿物由与还原硫结合的金属(称为硫化物)组成。它们因其导电能力而值得注意,这是一项关键要求。硫化物被广泛认为是最重要的矿石类型,目前供应大约 >80% 的铜、>70% 的钴、>60% 的镍、>95% 的锌和 >99% 的铂族金属。该项目将为这种全新的金属采矿方法提供基本的“概念验证”数据。我们预计会面临一些技术挑战,但如果我们成功了,那么我们就可以开启一个全新的可持续未来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Crane其他文献
Editorial: Resource Recovery From Waste
社论:废物资源回收
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.6
- 作者:
A. Lag;A. Velenturf;Richard Crane;I. Head;P. Purnell;K. Semple - 通讯作者:
K. Semple
Altered transmission of maternal angiotensin II receptor haplotypes in fetal growth restriction
胎儿生长受限时母体血管紧张素 II 受体单倍型传递的改变
- DOI:
10.1002/humu.20265 - 发表时间:
2006 - 期刊:
- 影响因子:3.9
- 作者:
C. Tower;S. Chappell;Meera Acharya;Richard Crane;S. Szolin;L. Symonds;Helen Chevins;N. Kalsheker;P. Baker;L. Morgan - 通讯作者:
L. Morgan
Richard Crane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
- 批准号:42371164
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于石笋记录的岩溶包气带硝酸盐氮遗留效应评估——以湖北清江和尚洞为例
- 批准号:42372355
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于电子雷管起爆的大型储油洞库围岩微损伤爆破破岩机理研究
- 批准号:52304204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
翼型动态试验中非定常洞壁干扰机理与修正方法研究
- 批准号:12302303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于近场动力学的深层缝洞型碳酸盐岩储层裂缝扩展机理研究
- 批准号:42302153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
樹洞と関連した樹木の資源分配戦略とその可塑性の解明
阐明树木资源分配策略及其与树洞相关的可塑性
- 批准号:
24K08984 - 财政年份:2024
- 资助金额:
$ 25.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cosmic powerhouses: The birth, death, and legacy of black hole jets
宇宙动力源:黑洞喷流的诞生、死亡和遗产
- 批准号:
DP240102970 - 财政年份:2024
- 资助金额:
$ 25.72万 - 项目类别:
Discovery Projects
宇宙線イメージングによる革新的地下空洞探査技術の開発
利用宇宙射线成像开发创新的地下洞穴勘探技术
- 批准号:
23K26351 - 财政年份:2024
- 资助金额:
$ 25.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
道教の聖地としての洞天への巡礼と東アジアにおけるその思想文化に関する調査研究
东亚道教圣地洞天朝圣及其思想文化研究
- 批准号:
23K25262 - 财政年份:2024
- 资助金额:
$ 25.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
- 批准号:
EP/X039889/1 - 财政年份:2024
- 资助金额:
$ 25.72万 - 项目类别:
Research Grant