Below the Branches of Universal Trees

普世树枝下

基本信息

  • 批准号:
    EP/X017796/1
  • 负责人:
  • 金额:
    $ 25.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Solving parity games is an intriguing problem that combines practical relevance with a long standing academic challenge. Its practical relevance is drawn from its prime position as the most difficult and most expensive step in automatically constructing (synthesis) and proving the correctness (model checking) of safety critical systems. It has further applications in the evaluation of nested fixed points and tropical algebra.It is academically intriguing, because the complexity of solving parity games is a long standing challenge. The theoretical understanding of the computational complexity of solving parity games is a coveted prize since the algorithmic challenge of solving parity games efficiently first arose as a fundamental and impactful open problem posed in the early 1990s. For example, the existence of a polynomial-time algorithm has been recently listed as one of the six most important open problems in the Automata Column of the ACM SIGLOG News.This high-risk project will attempt to show that solving parity games is computationally cheap.Attempting this challenge is bold (as it should be for a New Horizons project), but it is also timely: while five years ago all algorithms were exponential, a number of different approaches that are merely quasi-polynomial have recently been established. This makes the attempt to tear down the last barrier to polynomial time, and thus to efficient algorithms, is within reach for the first time.While the project is driven by scientific curiosity, it also feeds the conveyor belt of achieving higher technology readiness levels in follow-up research: once tractable algorithms are established in principle, highly efficient algorithms follow in due course, and they will help creating faster model checking and synthesis tools, and ultimately contributing to safer and better software.
解决平价博弈是一个有趣的问题,它结合了实际相关性和长期存在的学术挑战。它的实际意义源于其作为自动构建(综合)和证明安全关键系统的正确性(模型检查)中最困难和最昂贵的步骤的首要地位。它在嵌套不动点和热带代数的评估方面有进一步的应用。它在学术上很有趣,因为解决奇偶博弈的复杂性是一个长期存在的挑战。对解决奇偶博弈的计算复杂性的理论理解是一个令人垂涎的奖项,因为有效解决奇偶博弈的算法挑战首先作为 20 世纪 90 年代初提出的一个基本且有影响力的开放问题而出现。例如,多项式时间算法的存在最近被 ACM SIGLOG 新闻的自动机专栏列为六个最重要的开放问题之一。这个高风险项目将试图表明解决奇偶游戏的计算成本很低尝试这一挑战是大胆的(对于新视野项目来说应该如此),但它也很及时:虽然五年前所有算法都是指数级的,但最近已经建立了许多仅仅是拟多项式的不同方法。这使得第一次尝试消除多项式时间的最后障碍,从而实现高效算法。虽然该项目是由科学好奇心驱动的,但它也为实现更高的技术准备水平提供了传送带。后续研究:一旦原则上建立了易于处理的算法,高效的算法就会随之而来,它们将有助于创建更快的模型检查和综合工具,最终有助于更安全、更好的软件。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Objective Improvement Approach to Solving Discounted Payoff Games
解决折扣支付游戏的客观改进方法
Semantic Flowers for Good-for-Games and Deterministic Automata
适用于游戏和确定性自动机的语义花
  • DOI:
    10.1016/j.ipl.2023.106468
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Dell'Erba D
  • 通讯作者:
    Dell'Erba D
ECAI 2023 - 26th European Conference on Artificial Intelligence, September 30-October 4, 2023, Kraków, Poland - Including 12th Conference on Prestigious Applications of Intelligent Systems (PAIS 2023)
ECAI 2023 - 第 26 届欧洲人工智能会议,2023 年 9 月 30 日至 10 月 4 日,波兰克拉科夫 - 包括第 12 届智能系统著名应用会议 (PAIS 2023)
  • DOI:
    10.3233/faia230499
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Salimi P
  • 通讯作者:
    Salimi P
Automated Technology for Verification and Analysis - 21st International Symposium, ATVA 2023, Singapore, October 24-27, 2023, Proceedings, Part I
验证和分析自动化技术 - 第 21 届国际研讨会,ATVA 2023,新加坡,2023 年 10 月 24-27 日,会议记录,第一部分
  • DOI:
    10.1007/978-3-031-45329-8_3
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Y
  • 通讯作者:
    Li Y
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sven Schewe其他文献

Hydrogen permeation and embrittlement behavior of ferritic SOEC/SOFC interconnect candidates
铁素体 SOEC/SOFC 互连候选材料的氢渗透和脆化行为
  • DOI:
    10.1016/j.ijhydene.2024.03.337
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    David Kniep;Sven Schewe;Mario Rudolphi;Mathias Christian Galetz
  • 通讯作者:
    Mathias Christian Galetz

Sven Schewe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sven Schewe', 18)}}的其他基金

TRUSTED: SecuriTy SummaRies for SecUre SofTwarE Development
值得信赖:安全软件开发的安全摘要
  • 批准号:
    EP/X03688X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant
Valuation Structures for Infinite Duration Games
无限期游戏的估值结构
  • 批准号:
    EP/Y027663/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Fellowship
Reinforcement Learning for Finite Horizons (ReLeaF)
有限视野强化学习 (ReLeaF)
  • 批准号:
    EP/X021513/1
  • 财政年份:
    2022
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Fellowship
Solving Parity Games in Theory and Practice
从理论和实践中解决平价博弈
  • 批准号:
    EP/P020909/1
  • 财政年份:
    2017
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant
Energy Efficient Control
节能控制
  • 批准号:
    EP/M027287/1
  • 财政年份:
    2015
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant
Synthesis and Verification in Markov Game Structures
马尔可夫博弈结构的综合与验证
  • 批准号:
    EP/H046623/1
  • 财政年份:
    2010
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant

相似国自然基金

农村信贷资金流动:基于县域银行分支机构的视角
  • 批准号:
    71403116
  • 批准年份:
    2014
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

3D bioprinting nanofibre-reinforced vascular branches
3D生物打印纳米纤维增强血管分支
  • 批准号:
    2879497
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Studentship
Touch processing in the distal branches of first-order tactile neurons
一阶触觉神经元远端分支的触摸处理
  • 批准号:
    469248
  • 财政年份:
    2022
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Operating Grants
Structural dynamics of Augmin in the creation of microtubule branches. (ref: 4274)
Augmin 在微管分支创建中的结构动力学。
  • 批准号:
    2705205
  • 财政年份:
    2022
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Studentship
Coulomb Branches, Shifted Quantum Groups, and their Applications
库仑支、移位量子群及其应用
  • 批准号:
    2037602
  • 财政年份:
    2020
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
Coulomb Branches, Shifted Quantum Groups, and their Applications
库仑支、移位量子群及其应用
  • 批准号:
    2001247
  • 财政年份:
    2020
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了