Direct airborne particulate and bioaerosol capture using suspended liquid surfactant membranes for continuous biodetection and threat analysis

使用悬浮液体表面活性剂膜直接捕获空气中的颗粒物和生物气溶胶,进行连续生物检测和威胁分析

基本信息

  • 批准号:
    EP/X017702/1
  • 负责人:
  • 金额:
    $ 25.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Infectious airborne diseases are an enormous socioeconomic burden with impacts that span plant, animal and human health. Technology capable of collecting and seamlessly detecting the presence of pathogens have yet to reach maturity rendering aerosol dispersion as a disease vector particularly challenging to mitigate. To date there is no widespread use of sentinel or monitor systems to mitigate airborne disease transmission, pushing the burden of disease prevention onto diagnostic approaches and post disease infection control measures, as witnessed during the SARS-CoV-2 pandemic. The ability to continuously monitor air samples and identify new and emerging risks has the potential to deliver early warning and inform decision making prior to infection, providing enhanced protection for a wide variety of use cases in environmental, civilian and military settings.The vision for this research programme is to take a leap forward in high-concentration, low-loss, aerosol capture for biodetection purposes through the development of a liquid membrane system that directly captures airborne material into a fluid that can be readily sampled for rapid downstream analysis. Resolving this has application towards airborne monitoring across a range of indoor and outdoor settings.Flexible liquid surfactant membranes are wholly untested for aerosol collection and detection. There are several engineering challenges to overcome in the setup and stabilisation of surfactant membranes in addition to the added complexity of particle capture from air moving over the membrane. The two core engineering challenges for this research are, firstly, the ability to reliably generate, sustain and subsequently manage the collapse of a liquid film membrane (LiMEM) that has a composition that is biocompatible with downstream analysis tools such as molecular diagnostic (qPCR, LAMP) or immunoassay-based detection (LFA etc). The second, and perhaps more ambitious aspect of this research is the suspension of the LiMEM within an airflow to efficiently capture and retain aerosol material.Addressing these engineering challenges would yield a tool that can combat the transmission of pathogenic aerosols, leading to increased confidence in defence settings, identification of new and emerging environmental disease risks or halting the spread of Healthcare Associated Infection (HCAI) in hospital and care settings. The proposed research plan is divided into phases to address the underlying engineering challenges. Over 24 months we will develop a proof of principle platform to validate the LiMEM concept as a potential component in a fully integrated platform for collection, analysis and identification and quantification of harmful biological aerosols. The system will be benchmarked against known biowarfare aerosol analogs (inert/aerodynamic: Polystyrene (PSL) microspheres, bacterial spore: Bacillus Atrophaeus, protein/toxin: ovalbumin) so that the resultant data can be compared reliably to other recent biodetection advances developed by the UH group for the UK MoD (e.g. ESP/Electrowetting platforms).Driven by the combined vision of aerosol detection specialists, environmental engineering experts and with input from infection control and management experts, this highly ambitious project aims to deliver a new method to providing transformative real-time low cost environmental bioaerosol monitoring technology.
传染性空气传播疾病是巨大的社会经济负担,影响植物、动物和人类健康。能够收集和无缝检测病原体存在的技术尚未成熟,使得气溶胶扩散作为疾病媒介特别难以缓解。迄今为止,尚未广泛使用哨兵或监测系统来减轻空气传播疾病的传播,从而将疾病预防的负担推到了诊断方法和疾病感染后控制措施上,正如 SARS-CoV-2 大流行期间所见证的那样。持续监测空气样本并识别新出现的风险的能力有可能在感染之前提供早期预警并为决策提供信息,从而为环境、民用和军事环境中的各种用例提供​​增强的保护。这一愿景研究计划是通过开发液膜系统,在用于生物检测的高浓度、低损失、气溶胶捕获方面取得飞跃,该系统可以直接将空气中的物质捕获到可以轻松采样以进行快速下游分析的流体中。解决这个问题可应用于各种室内和室外环境的空气监测。柔性液体表面活性剂膜完全未经气溶胶收集和检测测试。除了从膜上移动的空气捕获颗粒的复杂性增加之外,表面活性剂膜的设置和稳定还需要克服一些工程挑战。这项研究的两个核心工程挑战是,首先,能够可靠地生成、维持和随后管理液膜 (LiMEM) 的塌陷,该液膜膜的成分与分子诊断 (qPCR、 LAMP)或基于免疫分析的检测(LFA 等)。这项研究的第二个也许更雄心勃勃的方面是将 LiMEM 悬浮在气流中,以有效捕获和保留气溶胶物质。解决这些工程挑战将产生一种可以对抗致病性气溶胶传播的工具,从而增强对气溶胶传播的信心。防御环境、识别新出现的环境疾病风险或阻止医院和护理机构中医疗保健相关感染 (HCAI) 的传播。拟议的研究计划分为几个阶段,以解决潜在的工程挑战。我们将在 24 个月内开发一个原理验证平台,以验证 LiMEM 概念作为收集、分析、识别和量化有害生物气溶胶的完全集成平台的潜在组成部分。该系统将以已知的生物战气溶胶类似物(惰性/空气动力学:聚苯乙烯(PSL)微球、细菌孢子:萎缩芽孢杆菌、蛋白质/毒素:卵清蛋白)为基准,以便将所得数据与该公司开发的其他最新生物检测进展进行可靠比较。英国国防部的 UH 小组(例如 ESP/Electrowetting 平台)。由气溶胶检测专家、环境工程的综合愿景驱动这个雄心勃勃的项目旨在提供一种新方法,以提供变革性的实时低成本环境生物气溶胶监测技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel McCluskey其他文献

Optimizing the hydrocyclone for ballast water treatment using computational fluid dynamics
使用计算流体动力学优化用于压载水处理的水力旋流器

Daniel McCluskey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel McCluskey', 18)}}的其他基金

14TSB_ESAP Improved risk prediction for precision agriculture: automated monitoring of pathogen movement
14TSB_ESAP 改进精准农业的风险预测:自动监测病原体运动
  • 批准号:
    BB/M005453/1
  • 财政年份:
    2014
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Research Grant

相似国自然基金

基于土地利用变化模拟的流域源头区水环境治理措施时空降尺度优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于临界状态辨识的综合能源系统运行可靠性全解析建模与时空降维方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
从平流层环流异常到欧亚区域极端冷事件的时空降尺度影响过程研究
  • 批准号:
    42075052
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于混合模型的载人空降乘员防护装置可靠性技术研究
  • 批准号:
    51305047
  • 批准年份:
    2013
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
普林尼空降浮岩气孔三维结构特征及其对喷发行为的启示
  • 批准号:
    41002121
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Aeroallergens, Air Pollution and Respiratory Health in the Chickasaw Nation A1
契卡索族的空气过敏原、空气污染和呼吸系统健康 A1
  • 批准号:
    10397684
  • 财政年份:
    2021
  • 资助金额:
    $ 25.21万
  • 项目类别:
Aeroallergens, Air Pollution and Respiratory Health in the Chickasaw Nation A1
契卡索族的空气过敏原、空气污染和呼吸系统健康 A1
  • 批准号:
    10239486
  • 财政年份:
    2021
  • 资助金额:
    $ 25.21万
  • 项目类别:
Direct-read monitor for airborne viral pathogens
空气传播病毒病原体的直读监测仪
  • 批准号:
    9770710
  • 财政年份:
    2019
  • 资助金额:
    $ 25.21万
  • 项目类别:
An instrument for direct exposure of cell cultures to airborne particulate matter
一种将细胞培养物直接暴露于空气颗粒物的仪器
  • 批准号:
    8453292
  • 财政年份:
    2012
  • 资助金额:
    $ 25.21万
  • 项目类别:
Oxidative Stress & Inflammation in a Human PM Nasal Challenge
氧化应激
  • 批准号:
    8294886
  • 财政年份:
    2011
  • 资助金额:
    $ 25.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了