Measurement Suite for the Accelerated Design of Advanced, Quantum and Functional Materials

用于加速先进、量子和功能材料设计的测量套件

基本信息

  • 批准号:
    EP/T031441/1
  • 负责人:
  • 金额:
    $ 172.29万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

The modern technological world is underpinned by an incredible array of advanced materials, many of which took many years from their discovery to their eventual application. The first germanium transistor was built in 1947 but the use of silicon -based transistors did not become widespread until the 1960s and the first microprocessors did not appear until the later 1970s, paving the way to the explosion of personal computing, tablets and smart phones that proliferate today. Similar long timelines can be drawn for the liquid crystals that fill our TV screens or the magnetic hard drives that until recently were ubiquitous in every computer. Only recently has flash memory replaced magnetic disks in portable devices, which make use of a purely `quantum mechanical 'property called tunnelling whereby electrons can pass through barriers that in our everyday large scale `classical' world would not be possible. Silicon, which from the viewpoint of quantum mechanics is just about the simplest type of electronic material imaginable, dominates our current world. In silicon the electrons more or less ignore the presence of their fellow electrons, yet there are much more complex and interesting materials involving the collective motion of `correlated' electrons that have the potential to yield much more powerful technologies. In parallel the development of materials for energy creation and storage also have a profound influence on our lives. The appearance of the Sony Walkman personal cassette player in Japan in 1979 was simply because the density of energy stored in a small portable battery made it feasible. Today however, the global crisis in climate change and the need for cleaner and renewable energy sources gives the development of new materials for energy a much more serious and urgent priority. This proposal concerns itself with development of just the types of materials discussed above, materials that in future could form the heart of powerful technologies of wide benefit to society, but currently in the first stages of creation and development. We are concerned among other things with: energy related materials for batteries, fuel cells, clean catalysis (including carbon neutral hydrogen production); the complex electronic properties of strongly correlated electronic materials, novel quantum and topological materials; new magnetic materials and ferroelectric materials for advanced data storage and manipulation. In developing advanced functional materials it is important to know not only their composition, crystalline structure and morphology, but also to understand how small changes in all of these relate to the physical properties that make them both interesting and useful in applications. Material creation can take many forms, from traditional solid state chemical synthesis to thin film deposition techniques where we deposit one layer of atoms at a time and can even create materials not possible in bulk crystalline form. Whatever the route, it is essential to know as quickly as possible after, or even during, synthesis if the properties of this material are the ones that are required (or are interesting in some additional unexpected way). Obtaining this rapid feedback between growth and measurement is essential if one is to progress rapidly in the development of new materials. The focus of this application is to provide the infrastructure that can rigorously examine a wide range of relevant physical properties quickly and in way that can be undertaken by a wide range of people with a variety of expertise. Modern materials research is a truly interdisciplinary pursuit and involves physicists, chemists and materials scientists and engineers all of whom have very different specialist knowledge but who need to easily obtain information on the materials on which they work. Our equipment will allow a range of valuable properties to be measured efficiently, paving the way to future technological applications.
现代技术世界以一系列令人难以置信的先进材料为基础,其中许多材料从发现到最终应用需要多年时间。第一个锗晶体管于 1947 年制造,但直到 20 世纪 60 年代硅基晶体管的使用才得到广泛应用,而第一个微处理器直到 20 世纪 70 年代后期才出现,为个人计算、平板电脑和智能手机的爆炸式增长铺平了道路。今天激增。对于充满电视屏幕的液晶或直到最近在每台计算机中无处不在的磁性硬盘驱动器,也可以绘制类似的长时间表。直到最近,闪存才取代了便携式设备中的磁盘,便携式设备利用了一种称为隧道效应的纯粹“量子力学”特性,电子可以通过这种特性穿过我们日常大规模“经典”世界中不可能的障碍。从量子力学的角度来看,硅几乎是可以想象到的最简单的电子材料,它主导着我们当前的世界。在硅中,电子或多或少地忽略了其他电子的存在,但还有更复杂和有趣的材料,涉及“相关”电子的集体运动,有可能产生更强大的技术。与此同时,能源创造和储存材料的发展也对我们的生活产生深远的影响。 1979 年,索尼随身听个人录音机在日本出现,仅仅是因为小型便携式电池中存储的能量密度使其成为可能。然而,今天,全球气候变化危机以及对清洁和可再生能源的需求使新能源材料的开发成为更加严肃和紧迫的优先事项。该提案涉及上述材料类型的开发,这些材料在未来可能成为对社会广泛造福的强大技术的核心,但目前处于创造和开发的第一阶段。我们关注的领域包括:用于电池、燃料电池、清洁催化(包括碳中性氢气生产)的能源相关材料;强相关电子材料、新型量子和拓扑材料的复杂电子特性;用于高级数据存储和操作的新型磁性材料和铁电材料。在开发先进功能材料时,重要的是不仅要了解它们的成分、晶体结构和形态,还要了解所有这些的微小变化如何与使它们在应用中既有趣又有用的物理特性相关。材料的创造可以采取多种形式,从传统的固态化学合成到薄膜沉积技术,我们一次沉积一层原子,甚至可以创造出块状晶体形式不可能的材料。无论采用哪种途径,在合成之后甚至合成期间尽快了解该材料的特性是否是所需的(或者以某种额外的意想不到的方式令人感兴趣)是至关重要的。如果要在新材料的开发中取得快速进展,获得生长和测量之间的快速反馈至关重要。该应用程序的重点是提供基础设施,该基础设施可以快速严格地检查各种相关的物理特性,并且可以由具有各种专业知识的广泛人员进行。现代材料研究是一项真正的跨学科研究,涉及物理学家、化学家、材料科学家和工程师,他们都拥有截然不同的专业知识,但需要轻松获取有关其工作材料的信息。我们的设备将能够有效测量一系列有价值的特性,为未来的技术应用铺平道路。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polar Ferromagnet Induced by Fluorine Positioning in Isomeric Layered Copper Halide Perovskites.
异构层状卤化铜钙钛矿中氟定位诱导的极性铁磁体。
  • DOI:
    http://dx.10.1021/acs.inorgchem.1c03726
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Han C
  • 通讯作者:
    Han C
Partitioning the Two-Leg Spin Ladder in Ba2Cu1 - x Zn x TeO6: From Magnetic Order through Spin-Freezing to Paramagnetism.
Ba2Cu1 - x Zn x TeO6 中的两腿自旋梯的划分:从磁序到自旋冻结到顺磁性。
Structural Features in Some Layered Hybrid Copper Chloride Perovskites: ACuCl4 or A2CuCl4.
一些层状杂化氯化铜钙钛矿的结构特征:ACuCl4 或 A2CuCl4。
  • DOI:
    10.1021/acs.inorgchem.1c00705
  • 发表时间:
    2021-07-09
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Ceng Han;Alasdair J. Bradford;A. Slawin;B. Bode;E. Fusco;Stephen L. Lee;C. Tang;P. Lightfoot
  • 通讯作者:
    P. Lightfoot
Polarity and Ferromagnetism in Two-Dimensional Hybrid Copper Perovskites with Chlorinated Aromatic Spacers.
具有氯化芳香族间隔基的二维杂化铜钙钛矿的极性和铁磁性。
Phase diagram of Ce Sb 2 from magnetostriction and magnetization measurements: Evidence for ferrimagnetic and antiferromagnetic states
磁致伸缩和磁化测量得到的 Ce Sb 2 相图:亚铁磁和反铁磁态的证据
  • DOI:
    http://dx.10.1103/physrevb.104.205134
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Trainer C
  • 通讯作者:
    Trainer C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Lee其他文献

Mechanistic investigation of the growth of Fe1-xCoxSi (0 ≤ x ≤ 1) and Fe5(Si1-yGey)3 (0 ≤ y ≤ 0.33) ternary alloy nanowires.
Fe1-xCoxSi (0≤x≤1)和Fe5(Si1-yGey)3(0≤y≤0.33)三元合金纳米线的生长机理研究。
  • DOI:
    10.1021/nn200387y
  • 发表时间:
    2011-03-11
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    J. Higgins;P. Carmichael;Andrew L. Schmitt;Stephen Lee;John P. Degrave;Song Jin
  • 通讯作者:
    Song Jin
Subcellular dynamics of the VHL tumor suppressor: on the move for HIF degradation.
VHL 肿瘤抑制因子的亚细胞动力学:HIF 降解的进展。
  • DOI:
    10.2217/14796694.5.1.85
  • 发表时间:
    2009-02-26
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    M. Khacho;Stephen Lee
  • 通讯作者:
    Stephen Lee
Synergistic thermoelectric power factor increase in films incorporating tellurium and thiophene-based semiconductors
碲和噻吩基半导体薄膜的协同热电功率因数增加
  • DOI:
    10.1557/mrc.2013.14
  • 发表时间:
    2013-06-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    J. Sinha;R. Irel;Stephen Lee;H. Katz
  • 通讯作者:
    H. Katz
The repercussions in higher education of the changes in the teaching and learning of mechanics in schools in England
英国学校力学教学变化对高等教育的影响
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephen Lee
  • 通讯作者:
    Stephen Lee
Evidence for flux-lattice melting and a dimensional crossover in single-crystal Bi2.15Sr1.85CaCu2O8+ delta from muon spin rotation studies.
来自μ子自旋旋转研究的单晶 Bi2.15Sr1.85CaCu2O8 δ 中通量晶格熔化和维度交叉的证据。
  • DOI:
    10.1103/physrevlett.71.3862
  • 发表时间:
    1993-12-06
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Stephen Lee;P. Zimmermann;H. Keller;M. Warden;I. Savić;R. Schauwecker;D. Zech;R. Cubitt;E. Forgan;P. Kes;T. W. Li;A. Menovsky;Z. Tarnawski
  • 通讯作者:
    Z. Tarnawski

Stephen Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Lee', 18)}}的其他基金

DESC: Type I: Data-driven system-design for sustainable long-lasting distributed infrastructures
DESC:类型 I:数据驱动的系统设计,实现可持续的持久分布式基础设施
  • 批准号:
    2324873
  • 财政年份:
    2023
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Standard Grant
Identifying genomic resources against pests and pathogens in tree genera: a case study in Fraxinus
识别树属害虫和病原体的基因组资源:白蜡树案例研究
  • 批准号:
    BB/L012006/1
  • 财政年份:
    2014
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Research Grant
Generation, Imaging and Control of Novel Coherent Electronic States in Artificial Ferromagnetic-Superconducting Hybrid Metamaterials and Devices
人造铁磁-超导混合超材料和器件中新型相干电子态的生成、成像和控制
  • 批准号:
    EP/J01060X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Research Grant
Generation, Imaging and Control of Novel Coherent Electronic States in Artificial Ferromagnetic-Superconducting Hybrid Metamaterials and Devices
人造铁磁-超导混合超材料和器件中新型相干电子态的生成、成像和控制
  • 批准号:
    EP/J01060X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Research Grant
Development of AlGaN Biosensor sensitive in physiological saline
开发对生理盐水敏感的AlGaN生物传感器
  • 批准号:
    0756594
  • 财政年份:
    2008
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Continuing Grant
Complex Intermetallics, New Dimensions: A Synthetic, Structural and Theoretical Approach
复杂金属间化合物,新维度:综合、结构和理论方法
  • 批准号:
    0804223
  • 财政年份:
    2008
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Continuing Grant
Advanced Characterisation of Magnetic Recording Media using Neutron Scattering
使用中子散射对磁记录介质进行高级表征
  • 批准号:
    EP/E038514/1
  • 财政年份:
    2007
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Research Grant
Field Induced Quantum Ordering
场诱导量子排序
  • 批准号:
    EP/E064264/1
  • 财政年份:
    2007
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Research Grant
Confronting Complexity in Intermetallics: A Synthetic, Structural and Theoretical Approach
面对金属间化合物的复杂性:一种合成、结构和理论方法
  • 批准号:
    0504703
  • 财政年份:
    2005
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Continuing grant
CRC: Multi-dimensional Molecular Metals, Crystal Design, and Superconductivity
CRC:多维分子金属、晶体设计和超导性
  • 批准号:
    0209934
  • 财政年份:
    2002
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Standard Grant

相似海外基金

UK ELT: The next generation instrumentation suite for the Extremely Large Telescope
英国 ELT:用于超大望远镜的下一代仪器套件
  • 批准号:
    ST/Y005309/1
  • 财政年份:
    2024
  • 资助金额:
    $ 172.29万
  • 项目类别:
    Research Grant
Interoperable applications suite to enhance European identity and document Security and fraud detection (EINSTEIN)
可互操作的应用程序套件可增强欧洲身份和文件安全以及欺诈检测 (EINSTEIN)
  • 批准号:
    10093453
  • 财政年份:
    2024
  • 资助金额:
    $ 172.29万
  • 项目类别:
    EU-Funded
m6A-suite: an informatics pipeline and resource for elucidating roles of m6A epitranscriptome in cancer
m6A-suite:用于阐明 m6A 表观转录组在癌症中的作用的信息学管道和资源
  • 批准号:
    10645584
  • 财政年份:
    2023
  • 资助金额:
    $ 172.29万
  • 项目类别:
The Neuroimaging Brain Chart Software Suite
神经影像脑图软件套件
  • 批准号:
    10581015
  • 财政年份:
    2023
  • 资助金额:
    $ 172.29万
  • 项目类别:
MorPhiC: Constructing a Catalog of Cellular Programs to Identify and Annotate Human Disease Genes
MorPhiC:构建细胞程序目录来识别和注释人类疾病基因
  • 批准号:
    10733164
  • 财政年份:
    2023
  • 资助金额:
    $ 172.29万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了