Mechanobiology-based medicine

基于机械生物学的医学

基本信息

  • 批准号:
    EP/W004623/1
  • 负责人:
  • 金额:
    $ 38.59万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Nowadays diagnosis is largely enabled by the identification of molecular markers associated with the onset of a pathological state. Nevertheless, many diseases escape this paradigm, as the biochemical fingerprint of the aberrant cells do not differ significantly from healthy ones, hindering early diagnosis and reducing the impact of treatments. One prototypical example is Leukaemia, a type of cancer that kills more than 300,000 people in the world every year. The evolution of the disease happens as we get older, but there is now evidence that cells in our body progress towards a malignant phenotype many years before they can be identified with current diagnostic techniques. This proposal will exploit mechanobiology, a field of research that has progressed in the last 10 years, as a novel method to interrogate very early changes in cellular state, bringing it closer to medical use by combining advanced biomaterials, novel microscopy techniques and robotics. Mechanobiology has taught us that cells can feel and react to their mechanical environment. For example, cancer cells are softer than normal cells. However, reorganisation of their niche causes increased tissue stiffness. Here, we will use mechanical stimulation to interrogate cells potential to become cancer cells. Cell response to these external mechanical stimuli will reveal their potential to evolve from health to disease.We will focus on leukaemia, a cancer that originates in the bone marrow, as normal haematopoietic stem cells, which play the essential role to make our blood, start a malignant transformation giving rise to leukaemic stem cells. When this happens, we propose MSCs proliferate and produce new extracellular matrix, leading to a stiffer environment. It is believed that these changes in the environment trigger further expansion of leukaemic cells and vice versa. This project will develop an in vitro model of the bone marrow using soft hydrogels with defined mechanical and biochemical properties that host mesenchymal stem cells and hematopoietic (or leukaemic) stem cells. We will investigate how external mechanical stimulation of the model using nanoscale vibration of controlled frequency and amplitude can stimulate both cell populations to identify and maximise changes triggered by the presence of leukaemic cells. To monitor these mechanical changes in the bone marrow model we will develop Brillouin microscopy for use in a biological context. This technique is based on the propagation of acoustic waves in the system to characterise mechanical properties and will allow detailed mapping of stiffness of the bone marrow model as a function of time - importantly in a non-invasive way. Moreover, the level of mechanical stimulation will be dependent on the readout provided by Brillouin microscopy that will feed into a control system to alter the level of the mechanical vibrational stimulation imposed on the bone marrow model.We will first investigate the sensitivity of our technology to detect the presence of a single leukaemic cell in our bone marrow model and then, we will establish a proof of concept experiment with patient cells, through our clinical collaborators, that either have early signs of potential leukemic transformation or remain healthy as they age.
如今,由于鉴定与病理状态的发作相关的分子标记,诊断在很大程度上可以实现。然而,许多疾病逃脱了这种范式,因为异常细胞的生化指纹与健康患者没有显着差异,阻碍了早期诊断并减少治疗的影响。一个典型的例子是白血病,一种癌症,每年可杀死世界上30万人。随着年龄的增长,这种疾病的演变发生了,但是现在有证据表明,我们体内的细胞在使用当前的诊断技术识别出多年之前朝着恶性表型发展。该建议将利用机械生物学,这是一个在过去10年中发展的研究领域,作为一种新的方法,是一种质疑细胞状态的早期变化的新方法,通过结合先进的生物材料,新颖的显微镜技术和机器人技术,使其更接近医学使用。机械生物学告诉我们,细胞可以感觉到并对它们的机械环境做出反应。例如,癌细胞比正常细胞柔软。但是,其利基的重组会导致组织刚度增加。在这里,我们将使用机械刺激来询问细胞可能成为癌细胞的潜力。细胞对这些外部机械刺激的反应将揭示其从健康发展到疾病的潜力。我们将重点放在白血病上,这是一种起源于骨髓的癌症,因为正常的造血干细胞,起着使我们的血液的重要作用,从而起步,从而引起恶性转化,从而引起白血病干细胞。发生这种情况时,我们提出MSC扩散并产生新的细胞外基质,从而导致环境更硬。人们认为,这些变化在环境中触发了白血病细胞的进一步扩展,反之亦然。该项目将使用具有定义的机械和生化特性的软水凝胶开发出骨髓的体外模型,该特性具有间质干细胞和造血(或白血病)干细胞。我们将使用受控频率和振幅的纳米级振动对模型的外部机械刺激如何刺激两个细胞群体,以识别和最大化白血病细胞触发的变化。为了监测骨髓模型中的这些机械变化,我们将开发在生物学环境中使用的布里鲁因显微镜。该技术基于系统中声波的传播,以表征机械性能,并将允许将骨髓模型的刚度详细绘制为时间的函数 - 重要的是以非侵入性的方式进行绘制。此外,机械刺激的水平将取决于布里鲁因显微镜所提供的读数,该读数将进入一个控制系统,以改变对骨髓模型的机械振动刺激水平。我们将首先研究我们技术的敏感性,以检测我们的骨髓模型中的单个白血病细胞的存在,并通过概念的依据,我们将在我们的骨髓模型和概念上建立概念的依据,我们将建立概念的经验,我们会在概念上签署概念,并且会在概念上签署概念,并且会发现,我们将建立概念的实验,并建立一个概念性的依据潜在的白血病转化或随着年龄的增长而保持健康。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Manuel Salmeron-Sanchez其他文献

Manuel Salmeron-Sanchez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Manuel Salmeron-Sanchez', 18)}}的其他基金

DEVISE: Engineered viscoelasticity in regenerative microenvironments
DEVISE:再生微环境中的工程粘弹性
  • 批准号:
    EP/X038599/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38.59万
  • 项目类别:
    Research Grant
Mechanobiology-based medicine / Mechanomeds
基于机械生物学的医学/机械医学
  • 批准号:
    EP/X033554/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38.59万
  • 项目类别:
    Research Grant
A novel tool for veterinary bone regeneration
兽医骨骼再生的新工具
  • 批准号:
    BB/T003995/1
  • 财政年份:
    2019
  • 资助金额:
    $ 38.59万
  • 项目类别:
    Research Grant
Engineering growth factor microenvironments - a new therapeutic paradigm for regenerative medicine
工程生长因子微环境——再生医学的新治疗范例
  • 批准号:
    EP/P001114/1
  • 财政年份:
    2016
  • 资助金额:
    $ 38.59万
  • 项目类别:
    Research Grant
Synergistic microenvironments for non-union bone defects
骨不连缺损的协同微环境
  • 批准号:
    MR/L022710/1
  • 财政年份:
    2014
  • 资助金额:
    $ 38.59万
  • 项目类别:
    Research Grant

相似国自然基金

基于医保战略性购买的国家药品价格谈判政策因果效应、长效机制及优化策略研究
  • 批准号:
    72374167
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
  • 批准号:
    72204173
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于医保大数据的药品合理使用监管决策创新方法研究
  • 批准号:
    82273899
  • 批准年份:
    2022
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中国医保药品支付标准政策效果评价与优化研究--基于三方演化博弈模型的视角
  • 批准号:
    72274008
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Digital cognitive-behavior therapy for anxiety and depressive disorders: Building an impactful research project from international partnerships and knowledge exchange in primary care
针对焦虑和抑郁症的数字认知行为疗法:通过初级保健领域的国际合作和知识交流建立一个有影响力的研究项目
  • 批准号:
    480808
  • 财政年份:
    2023
  • 资助金额:
    $ 38.59万
  • 项目类别:
    Miscellaneous Programs
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 38.59万
  • 项目类别:
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
  • 批准号:
    10555093
  • 财政年份:
    2023
  • 资助金额:
    $ 38.59万
  • 项目类别:
Centrally-linked longitudinal peripheral biomarkers of AD in multi-ethnic populations
多种族人群中 AD 的中心连锁纵向外周生物标志物
  • 批准号:
    10555723
  • 财政年份:
    2023
  • 资助金额:
    $ 38.59万
  • 项目类别:
Comprehensive and non-invasive prenatal screening of coding variation
全面、无创的编码变异产前筛查
  • 批准号:
    10678005
  • 财政年份:
    2023
  • 资助金额:
    $ 38.59万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了