Low Resistance Contacts on Atomically Thin Body Semiconductors for Energy Efficient Electronics (LoResCon)
用于节能电子产品的原子薄体半导体上的低电阻触点 (LoResCon)
基本信息
- 批准号:EP/T026200/1
- 负责人:
- 金额:$ 119.79万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The high performance, at relatively low energy cost in today's field effect transistors (FETs), is achieved by decades long optimization of electrical contacts that has allowed the miniaturization of the semiconductor channel down to nanoscale dimensions. However, decreasing dimensions of the devices leads to power dissipation in the off state (leakage current) and other detrimental consequences that are collectively referred to as short channel effects. Emergent semiconductors, such as MoS2, that are naturally atomically thin can in principle mitigate several concerns related to short channel effects. In FETs with atomically thin body (ATB) channels, the charge carriers are confined within the sub 1nm thick semiconductor so that application of gate voltage influences all the carriers uniformly. This prevents leakage currents and allows the FETs to be sharply turned on or off. The fact that atomically thin individual layers of bulk-layered materials can be isolated necessitates the absence of dangling bonds in 2D semiconductors, which means that surface roughness effects are minimized. Recent research in FETs suggests that such ATB materials could be one pathway towards future energy efficient electronics that can operate down to milli volts using the current CMOS manufacturing platform. While the benefits of 2D semiconductor FETs in addressing short channel effects are obvious, they still possess lower performance compared to state-of-the-art silicon and III-V semiconductor analogues due the high contact resistance. To reap the benefits of ultra-short channel (sub 10 nm node) and tunnel FETs, contact resistances must be reduced down to the quantum limit. The contact resistance acts as a severe source-choke. This leads to degradation in the performance of the transistor, because the current depends very strongly on the effective gate voltage at the source injection point. The high contact resistance between metals and 2D semiconductors is a major barrier to their implementation in high performance short channel electronics. This proposal aims to pioneer low electrical resistance contacts on atomically thin body (ATB) transition metal dichalcogenide (TMD) semiconductors to enable the exploration of fundamental phenomena that is currently limited by poor contacts - with the motivation to understand key processes that underpin the behavior of short channel and tunnel field effect transistors so that devices with unprecedented energy efficiency and performance can be realized. The proposal builds on the our recent breakthrough on van der Waals contacts on ATB semiconductors published in Nature (April 2019) and strategic investments in the Materials for Energy-Efficient ICT theme at Cambridge through the Sir Henry Royce Institute. Our ambition is to realize low resistance contacts on ATB semiconductors that will allow a broad range of device communities to address and overcome the long-standing challenge of making good electrical contacts on low dimensional materials. The proposed work will underpin and impact ongoing programmes and initiatives aligned with several EPSRC priority areas. This includes adaptation of low resistance contacts for in operando characterization of battery materials using microelectrochemical cells and low resistance contacts for organic semiconductors and perovskites. This proposal aims to bring a step-change and establish an internationally leading programme in low resistance contacts for high-performance electronics based on ATB semiconductors that will add value and connect a broad range of communities. The proposed work will open up new pathways for achieving in-depth fundamental knowledge of physics of novel devices based on ATB materials to accelerate their development towards technological readiness and commercialization in higher value-added products.
当今场效应晶体管 (FET) 的高性能和相对较低的能源成本是通过数十年的电接触优化实现的,这使得半导体通道小型化至纳米级尺寸。然而,器件尺寸的减小会导致关断状态下的功耗(漏电流)和其他不利后果,统称为短沟道效应。新兴半导体,例如MoS2,其天然厚度为原子级,原则上可以减轻与短沟道效应相关的一些问题。在具有原子薄体 (ATB) 沟道的 FET 中,电荷载流子被限制在亚 1nm 厚的半导体内,因此施加的栅极电压会均匀地影响所有载流子。这可以防止漏电流并允许 FET 快速导通或截止。事实上,原子级薄的层状材料的各个层可以被隔离,这就需要二维半导体中不存在悬空键,这意味着表面粗糙度的影响被最小化。最近对 FET 的研究表明,此类 ATB 材料可能成为未来节能电子产品的一种途径,这些电子产品可以使用当前的 CMOS 制造平台在低至毫伏的电压下工作。虽然 2D 半导体 FET 在解决短沟道效应方面的优势显而易见,但由于接触电阻较高,与最先进的硅和 III-V 半导体类似物相比,它们的性能仍然较低。为了获得超短沟道(亚 10 nm 节点)和隧道 FET 的优势,必须将接触电阻降低至量子极限。接触电阻充当严重的源扼流圈。这会导致晶体管性能下降,因为电流非常依赖于源极注入点处的有效栅极电压。金属和二维半导体之间的高接触电阻是其在高性能短沟道电子器件中实现的主要障碍。该提案旨在开创原子薄体(ATB)过渡金属二硫属化物(TMD)半导体上的低电阻接触,从而能够探索目前因接触不良而受到限制的基本现象 - 其动机是了解支撑其行为的关键过程。短沟道和隧道场效应晶体管使器件具有前所未有的能效和性能。该提案建立在我们最近在《自然》杂志(2019 年 4 月)上发表的关于 ATB 半导体的范德华接触方面的突破以及通过亨利·莱斯爵士研究所在剑桥大学对节能 ICT 材料主题进行的战略投资的基础上。我们的目标是在 ATB 半导体上实现低电阻接触,这将使广泛的设备社区能够解决并克服在低维材料上形成良好电接触的长期挑战。拟议的工作将支持并影响与 EPSRC 几个优先领域相一致的正在进行的计划和举措。这包括采用微电化学电池和有机半导体和钙钛矿的低电阻接触来调整低电阻接触,以用于电池材料的操作表征。该提案旨在实现重大变革,并在基于 ATB 半导体的高性能电子产品的低电阻触点方面建立国际领先的计划,从而增加价值并连接广泛的社区。拟议的工作将为深入了解基于 ATB 材料的新型器件的物理基础知识开辟新的途径,以加速其向高附加值产品的技术准备和商业化的发展。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoscale Characterisation of Heterointerfaces in 2D Materials
二维材料异质界面的纳米级表征
- DOI:http://dx.10.17863/cam.105989
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ramsden H
- 通讯作者:Ramsden H
P-type electrical contacts for two-dimensional transition metal dichalcogenides
二维过渡金属二硫属化物的 P 型电接触
- DOI:http://dx.10.17863/cam.88987
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chhowalla M
- 通讯作者:Chhowalla M
P-type electrical contacts for 2D transition-metal dichalcogenides.
二维过渡金属二硫属化物的 P 型电接触。
- DOI:http://dx.10.17863/cam.96160
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wang Y
- 通讯作者:Wang Y
Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111).
Ni (111) 上外延单晶六方氮化硼多层膜。
- DOI:http://dx.10.1038/s41586-022-04745-7
- 发表时间:2022
- 期刊:
- 影响因子:64.8
- 作者:Ma KY
- 通讯作者:Ma KY
Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111).
Ni (111) 上外延单晶六方氮化硼多层膜。
- DOI:http://dx.10.17863/cam.96369
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ma K
- 通讯作者:Ma K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manish Chhowalla其他文献
Smart textile lighting/display system with multifunctional fibre devices for large scale smart
具有多功能光纤器件的智能纺织照明/显示系统,用于大规模智能
- DOI:
10.21203/rs.3.rs-361161/v1 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
Hyung Woo Choi;Dong;Jiajie Yang;Sanghyo Lee;C. Figueiredo;S. Sinopoli;Kay Ullrich;P. Jovančić;Alessio Marrani;Roberto Momentè;João Gomes;R. Branquinho;Umberto Emanuele;Hanleem Lee;Sang Yun Bang;Sun;Soo Deok;Shijie Zhan;William Harden;Yo;Xiang;Tae Hoon Lee;Mohamed Chowdhury;Youngjin Choi;Salvatore Nicotera;Andrea Torchia;Francesc Mañosa;Moncunill;Virginia Garcia C;el;el;Nelson Durães;Kiseok Chang;Sung;Chul;M. Lucassen;A. Nejim;David Jiménez;Martijn Springer;Young‐Woo Lee;S. Cha;J. Sohn;R. Igreja;Kyungmin Song;P. Barquinha;Rodrigo;Martins;Gehan A J Amaratunga;L. Occhipinti;Manish Chhowalla;Jong Min Kim - 通讯作者:
Jong Min Kim
In situ scanning transmission electron microscopy observations of fracture at the atomic scale
原子尺度断裂的原位扫描透射电子显微镜观察
- DOI:
10.1103/physrevlett.125.246102 - 发表时间:
2020 - 期刊:
- 影响因子:8.6
- 作者:
Lingli Huang;Fangyuan Zheng;Qingming Deng;Quoc Huy Thi;Lok Wing Wong;Yuan Cai;Ning Wang;Chun-Sing Lee;Shu Ping Lau;Manish Chhowalla;Ju Li;Thuc Hue Ly;Jiong Zhao - 通讯作者:
Jiong Zhao
Environmental and Thermal Stability of Chemically Exfoliated LixMoS2 for Lithium–Sulfur Batteries
锂硫电池化学剥离 LixMoS2 的环境和热稳定性
- DOI:
10.1021/acs.chemmater.4c00674 - 发表时间:
2024-04-19 - 期刊:
- 影响因子:8.6
- 作者:
Ziwei Jeffrey Yang;Zhuangnan Li;G. Lampronti;Jung;Yan Wang;Jason Day;Manish Chhowalla - 通讯作者:
Manish Chhowalla
Stabilization of boron carbide via silicon doping
通过硅掺杂稳定碳化硼
- DOI:
10.1088/0953-8984/27/1/015401 - 发表时间:
2015-01-14 - 期刊:
- 影响因子:0
- 作者:
John E. Proctor;John E. Proctor;V. Bhakhri;R. Hao;Timothy J. Prior;T. Scheler;Eugene Gregoryanz;Manish Chhowalla;F. Giulani - 通讯作者:
F. Giulani
Room Temperature Negative Differential Resistance with High Peak Current in MoS2/WSe2 Heterostructures
MoS2/WSe2 异质结构中的室温负微分电阻和高峰值电流
- DOI:
10.1021/acs.nanolett.3c04607 - 发表时间:
2024-02-16 - 期刊:
- 影响因子:10.8
- 作者:
Jung Ho Kim;Soumya Sarkar;Yan Wang;T. Taniguchi;Kenji Watanabe;Manish Chhowalla - 通讯作者:
Manish Chhowalla
Manish Chhowalla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manish Chhowalla', 18)}}的其他基金
van der Waals Heterostructures for Next-generation Hot Carrier Photovoltaics
用于下一代热载流子光伏的范德华异质结构
- 批准号:
EP/Y028287/1 - 财政年份:2024
- 资助金额:
$ 119.79万 - 项目类别:
Fellowship
Demonstrating large-scale and high-performance lithium-sulfur batteries
展示大规模高性能锂硫电池
- 批准号:
EP/Y036735/1 - 财政年份:2023
- 资助金额:
$ 119.79万 - 项目类别:
Research Grant
Earth-abundant catalysts and novel layered 2D perovskites for solar water splitting (H2CAT)
地球上丰富的催化剂和新型层状二维钙钛矿用于太阳能水分解(H2CAT)
- 批准号:
EP/V012932/1 - 财政年份:2021
- 资助金额:
$ 119.79万 - 项目类别:
Research Grant
Graphene 2014 Conference at Rutgers University, New Brunswick May 6-9, 2014
石墨烯 2014 年会议,新不伦瑞克罗格斯大学,2014 年 5 月 6-9 日
- 批准号:
1442698 - 财政年份:2014
- 资助金额:
$ 119.79万 - 项目类别:
Standard Grant
Electrodes for Large Area Electronics Based on Partially Oxidized Graphene
基于部分氧化石墨烯的大面积电子电极
- 批准号:
1128335 - 财政年份:2011
- 资助金额:
$ 119.79万 - 项目类别:
Standard Grant
IGERT: Nanotechnology for Clean Energy
IGERT:清洁能源纳米技术
- 批准号:
0903661 - 财政年份:2009
- 资助金额:
$ 119.79万 - 项目类别:
Continuing Grant
GOALI: Investigation of Structure and Properties of Si Doped Boron Carbide
GOALI:硅掺杂碳化硼的结构和性能研究
- 批准号:
0604314 - 财政年份:2006
- 资助金额:
$ 119.79万 - 项目类别:
Continuing Grant
CAREER: Organic Memory Devices Based on Insulating Polymers and C60 Fullerene Molecules
职业:基于绝缘聚合物和 C60 富勒烯分子的有机存储器件
- 批准号:
0543867 - 财政年份:2006
- 资助金额:
$ 119.79万 - 项目类别:
Standard Grant
Single Wall Carbon Nanotube Architectures for Molecular-Scale Spin Injection Devices
用于分子级自旋注入装置的单壁碳纳米管结构
- 批准号:
0400501 - 财政年份:2004
- 资助金额:
$ 119.79万 - 项目类别:
Standard Grant
相似国自然基金
面向污水再生的抗生物污染反渗透功能层构建及其防御-反抗-清除机制
- 批准号:52100024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于氧化固醇结合蛋白结构的高活性及反抗性杀菌剂的合理设计
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
PRMT1-meFOXO1通路在低温常压等离子体诱导的三阴型乳腺癌细胞铁死亡中的作用机制研究
- 批准号:31900528
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
琥珀酸脱氢酶与酰胺类抑制剂的相互作用研究及反抗性杀菌剂分子设计
- 批准号:21977035
- 批准年份:2019
- 资助金额:66 万元
- 项目类别:面上项目
去唾液酸糖蛋白受体1(ASGR1)调控脂质转运的分子机制及其在非酒精性脂肪肝炎中的作用研究
- 批准号:31900539
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of ER-membrane contacts in biogenesis of RNA-containing EVs
内质网膜接触在含 RNA EV 生物发生中的作用
- 批准号:
10544789 - 财政年份:2020
- 资助金额:
$ 119.79万 - 项目类别:
Oncogenic Synapses: cell-cell contacts enabling trogocytic-based metabolic interactions between pancreatic cancer and fibroblastic stromal cells
致癌突触:细胞与细胞的接触使胰腺癌和成纤维基质细胞之间基于 Trogocytic 的代谢相互作用成为可能
- 批准号:
9894770 - 财政年份:2019
- 资助金额:
$ 119.79万 - 项目类别:
Low Resistance Metal/Germanium Contacts by Alleviation of Fermi Level Pinning Phenomenon
通过减轻费米能级钉扎现象实现低电阻金属/锗接触
- 批准号:
15H03565 - 财政年份:2015
- 资助金额:
$ 119.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Chromatin contacts are germline-transmissable vehicles underlying epigenetic transgenerational inheritance
染色质接触是表观遗传跨代遗传的种系可传递载体
- 批准号:
10745221 - 财政年份:2013
- 资助金额:
$ 119.79万 - 项目类别:
Spread of Community-Acquired MRSA Among Household Contacts
社区获得性 MRSA 在家庭接触者中的传播
- 批准号:
7608658 - 财政年份:2007
- 资助金额:
$ 119.79万 - 项目类别: