Biaxial Strained Transfer of Atomically Thin Nano-Electro-Mechanical Membranes
原子薄纳米机电膜的双轴应变转移
基本信息
- 批准号:EP/V052810/1
- 负责人:
- 金额:$ 32.21万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The next generation of MEMS is NEMS - nano-electro-mechanical systems, and the most promising candidate for NEMS membranes are graphene and 2-dimensional (2-D) materials. 2-D materials exhibit a unique combination of superlative properties such as high stiffness, low bending modulus, high elasticity, low mass per unit area, low thickness and high electrical conductivity. This allows for the development of NEMS membranes that can achieve behaviour that are typically considered conflicting in traditional MEMS devices and membranes, such as both high resonance frequency and high deflection amplitude. A number of 2-D NEMS devices have been demonstrated on the lab scale, including pressure, touch and mass sensors, microphones, self-sustained oscillators, quantum Hall devices, RF front-end filters, switches, photonic modulators and more. These novel NEMS devices will find applications in future robotics, electronics, healthcare, automotive, aerospace and more. The transition from lab-scale devices to large-scale manufacturing of 2-D NEMS has to overcome a number of critical challenges. Some of these challenges, such as minimising nanoscale defects and improving device yield and performance, have been addressed by employing few-layer graphene or graphene-polymer heterostructure membranes. However, there is still one key outstanding challenge in the future manufacturing of novel 2-D NEMS devices. It is well known that 2-D layers possess significant built-in tensile and compressive stresses which are both arbitrarily distributed as well as difficult to control. These arise both from the way that they are grown and the the way that they are transferred from one surface to another during NEMS manufacturing. In the nano-manufacturing of 2-D NEMS devices, it is essential that these built-in stresses are rendered uniformly within each device and across all devices. This will be accomplished in this project by developing a new process that will apply a well-controlled biaxial tensile strain to the 2-D membrane during the transfer from the parent to the target NEMS substrate. Not only will this strain ensure that the suspended membranes are uniform across all devices, the resulting pre-tension will also increase the stiffness of the membrane, and consequently the resonance quality factor of the resulting NEMS device. Furthermore, the static and dynamic sensitivity of the device and its resonance frequency can be tuned by controlling the pre-tension. It is also essential that this applied strain, and the residual strain in the resulting membrane, are monitored in real-time. In this project, we will implement in-situ strain monitoring based on the fact that the strain in 2-D materials can be detected as shifts in their signature Raman spectroscopy peaks.This project will enable the UK to take the lead in wafer-scale and roll-to-roll 2-D NEMS manufacturing, building on the UK's existing strengths in MEMS foundries, printed electronics, 2-D material production, and sensors and actuators. This in turn will strongly reinforce the health of a wide range of other manufacturing sectors including sensors, healthcare, communications, automotive and aerospace. 2-D NEMS will enable various next-generation devices and technologies that will transform our society to be more productive, connected, healthy and resilient.
下一代MEMS是NEMS-Nano-Electro机械系统,而NEMS膜的最有希望的候选者是石墨烯和二维(2-D)材料。二-D材料表现出最高级特性的独特组合,例如高刚度,低弯曲模量,高弹性,单位面积质量低,厚度低和高电导率。这允许开发NEMS膜,这些膜可以实现通常被认为是在传统的MEMS设备和膜中发生冲突的行为,例如高共振频率和高挠度幅度。在实验室尺度上已经证明了许多2D NEMS设备,包括压力,触摸和质量传感器,麦克风,自我维护的振荡器,量子霍尔设备,RF前端过滤器,开关,光子调节器等。这些新颖的NEM设备将在未来的机器人技术,电子,医疗保健,汽车,航空航天等中找到应用。从实验室规模的设备过渡到大规模制造的2D NEMS必须克服许多关键挑战。这些挑战中的某些挑战(例如使用少层石墨烯或石墨烯 - 聚合物异质结构膜)解决了这些挑战,例如最大程度地减少纳米级缺陷以及提高设备的产量和性能。但是,未来新型2D NEMS设备的制造中仍然存在一个关键的挑战。众所周知,二维层具有明显的内置拉伸和压缩应力,这些应力既是任意分布又难以控制的。这些都来自它们的种植方式,以及在NEM制造过程中将它们从一个表面转移到另一个表面的方式。在2D NEMS设备的纳米制造中,必须在每个设备和所有设备中均匀地呈现这些内置应力。这将在该项目中开发一个新的过程,该过程将在从母体转移到目标NEMS基板的过程中,将良好的双轴拉伸拉伸应变应用于2-D膜。这种菌株不仅可以确保悬浮的膜在所有设备上均匀,而且产生的预张力也会增加膜的刚度,从而增加所得NEMS设备的共振质量因子。此外,可以通过控制预张力来调整设备的静态和动态灵敏度及其共振频率。同样,必须实时监测该应用应变以及所得膜中的残余应变。 In this project, we will implement in-situ strain monitoring based on the fact that the strain in 2-D materials can be detected as shifts in their signature Raman spectroscopy peaks.This project will enable the UK to take the lead in wafer-scale and roll-to-roll 2-D NEMS manufacturing, building on the UK's existing strengths in MEMS foundries, printed electronics, 2-D material production, and sensors and actuators.反过来,这将强烈加强其他制造业的健康,包括传感器,医疗保健,通信,汽车和航空航天。 2D NEMS将实现各种下一代设备和技术,这些设备和技术将改变我们的社会,以更有生产力,联系,健康和韧性。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanically Stable Ultrathin Layered Graphene Nanocomposites Alleviate Residual Interfacial Stresses: Implications for Nanoelectromechanical Systems.
- DOI:10.1021/acsanm.2c03955
- 发表时间:2022-12-23
- 期刊:
- 影响因子:5.9
- 作者:Vassaux, Maxime;Muller, Werner A.;Suter, James L.;Vijayaraghavan, Aravind;Coveney, Peter, V
- 通讯作者:Coveney, Peter, V
Modeling Graphene-Polymer Heterostructure MEMS Membranes with the Föppl-von Kármán Equations.
- DOI:10.1021/acsami.2c21096
- 发表时间:2023-02-07
- 期刊:
- 影响因子:9.5
- 作者:Smith, Katherine;Retallick, Aidan;Melendrez, Daniel;Vijayaraghavan, Aravind;Heil, Matthias
- 通讯作者:Heil, Matthias
共 2 条
- 1
Aravind Vijayaraghavan其他文献
A Two-Bit-per-Cell Content-Addressable Memory Using Single-Electron Transistors, Multiple-Valued and Mixed-Mode Logic
使用单电子晶体管、多值和混合模式逻辑的每单元两位内容可寻址存储器
- DOI:
- 发表时间:20052005
- 期刊:
- 影响因子:0
- 作者:小野;行徳;Nicolas Clement;Aravind Vijayaraghavan;出川 勝彦小野;行徳;Nicolas Clement;Aravind Vijayaraghavan;出川 勝彦
- 通讯作者:出川 勝彦出川 勝彦
Back-gate effect on Coulomb blockade in silicon-on-insulator trench wires
绝缘体上硅沟槽线中库仑阻塞的背栅效应
- DOI:
- 发表时间:20052005
- 期刊:
- 影响因子:0
- 作者:小野;行徳;Nicolas Clement;Aravind Vijayaraghavan;出川 勝彦;西口 克彦小野;行徳;Nicolas Clement;Aravind Vijayaraghavan;出川 勝彦;西口 克彦
- 通讯作者:西口 克彦西口 克彦
共 2 条
- 1
Aravind Vijayaragh...的其他基金
Suspended graphene and carbon nanotube device arrays by bottom-up assembly
自下而上组装的悬浮石墨烯和碳纳米管器件阵列
- 批准号:EP/K009451/1EP/K009451/1
- 财政年份:2013
- 资助金额:$ 32.21万$ 32.21万
- 项目类别:Research GrantResearch Grant
相似国自然基金
单细胞中多种肾素-血管紧张素系统相关酶活性同时分析的纳米孔道新方法
- 批准号:22304077
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丘脑腹后外侧核中星形胶质细胞来源紧张性抑制电流在神经病理性疼痛中的作用及机制研究
- 批准号:82360235
- 批准年份:2023
- 资助金额:32.2 万元
- 项目类别:地区科学基金项目
肾副交感神经通过肾素-血管紧张素系统对血压的调控作用及机制
- 批准号:82300503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PLIN5介导脂滴-线粒体接触在血管紧张素Ⅱ诱导足细胞脂毒性损伤中的作用及机制
- 批准号:82300767
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管紧张素肽原在节律紊乱引起的PCOS排卵障碍中的作用及机制
- 批准号:82301839
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Contorted and Strained Molecular Nanographenes: Multi-Electron Storage and Reduction-Induced Transformations
扭曲和应变的分子纳米石墨烯:多电子存储和还原诱导的转变
- 批准号:24040312404031
- 财政年份:2024
- 资助金额:$ 32.21万$ 32.21万
- 项目类别:Continuing GrantContinuing Grant
Harnessing the Reactivity of Strained Macrocycles to Access Discrete Carbon Nanostructures
利用应变大环化合物的反应性来获得离散的碳纳米结构
- 批准号:24001472400147
- 财政年份:2024
- 资助金额:$ 32.21万$ 32.21万
- 项目类别:Standard GrantStandard Grant
New molecular shapes from strained aromatic foldamer macrocycles and their application to development of PPI inhibitors
应变芳香折叠大环化合物的新分子形状及其在 PPI 抑制剂开发中的应用
- 批准号:23KK013423KK0134
- 财政年份:2023
- 资助金额:$ 32.21万$ 32.21万
- 项目类别:Fund for the Promotion of Joint International Research (International Collaborative Research)Fund for the Promotion of Joint International Research (International Collaborative Research)
CAREER: Exploring Novel Chemical Space: Modular Synthesis of Biologically Relevant Strained Molecules
职业:探索新的化学空间:生物相关应变分子的模块化合成
- 批准号:21439252143925
- 财政年份:2022
- 资助金额:$ 32.21万$ 32.21万
- 项目类别:Continuing GrantContinuing Grant
Design, Synthesis and Evaluation of Functional Benzosiloles and New Reactions of Strained Carbocycles
功能性苯并硅杂环化合物和应变碳环新反应的设计、合成和评价
- 批准号:RGPIN-2021-03925RGPIN-2021-03925
- 财政年份:2022
- 资助金额:$ 32.21万$ 32.21万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual