Biaxial Strained Transfer of Atomically Thin Nano-Electro-Mechanical Membranes

原子薄纳米机电膜的双轴应变转移

基本信息

  • 批准号:
    EP/V052810/1
  • 负责人:
  • 金额:
    $ 32.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The next generation of MEMS is NEMS - nano-electro-mechanical systems, and the most promising candidate for NEMS membranes are graphene and 2-dimensional (2-D) materials. 2-D materials exhibit a unique combination of superlative properties such as high stiffness, low bending modulus, high elasticity, low mass per unit area, low thickness and high electrical conductivity. This allows for the development of NEMS membranes that can achieve behaviour that are typically considered conflicting in traditional MEMS devices and membranes, such as both high resonance frequency and high deflection amplitude. A number of 2-D NEMS devices have been demonstrated on the lab scale, including pressure, touch and mass sensors, microphones, self-sustained oscillators, quantum Hall devices, RF front-end filters, switches, photonic modulators and more. These novel NEMS devices will find applications in future robotics, electronics, healthcare, automotive, aerospace and more. The transition from lab-scale devices to large-scale manufacturing of 2-D NEMS has to overcome a number of critical challenges. Some of these challenges, such as minimising nanoscale defects and improving device yield and performance, have been addressed by employing few-layer graphene or graphene-polymer heterostructure membranes. However, there is still one key outstanding challenge in the future manufacturing of novel 2-D NEMS devices. It is well known that 2-D layers possess significant built-in tensile and compressive stresses which are both arbitrarily distributed as well as difficult to control. These arise both from the way that they are grown and the the way that they are transferred from one surface to another during NEMS manufacturing. In the nano-manufacturing of 2-D NEMS devices, it is essential that these built-in stresses are rendered uniformly within each device and across all devices. This will be accomplished in this project by developing a new process that will apply a well-controlled biaxial tensile strain to the 2-D membrane during the transfer from the parent to the target NEMS substrate. Not only will this strain ensure that the suspended membranes are uniform across all devices, the resulting pre-tension will also increase the stiffness of the membrane, and consequently the resonance quality factor of the resulting NEMS device. Furthermore, the static and dynamic sensitivity of the device and its resonance frequency can be tuned by controlling the pre-tension. It is also essential that this applied strain, and the residual strain in the resulting membrane, are monitored in real-time. In this project, we will implement in-situ strain monitoring based on the fact that the strain in 2-D materials can be detected as shifts in their signature Raman spectroscopy peaks.This project will enable the UK to take the lead in wafer-scale and roll-to-roll 2-D NEMS manufacturing, building on the UK's existing strengths in MEMS foundries, printed electronics, 2-D material production, and sensors and actuators. This in turn will strongly reinforce the health of a wide range of other manufacturing sectors including sensors, healthcare, communications, automotive and aerospace. 2-D NEMS will enable various next-generation devices and technologies that will transform our society to be more productive, connected, healthy and resilient.
下一代 MEMS 是 NEMS(纳米机电系统),NEMS 膜最有希望的候选者是石墨烯和二维 (2-D) 材料。二维材料表现出独特的卓越性能组合,例如高刚度、低弯曲模量、高弹性、低单位面积质量、低厚度和高导电率。这使得 NEMS 膜的开发能够实现传统 MEMS 器件和膜中通常被认为是冲突的行为,例如高谐振频率和高偏转幅度。许多二维 NEMS 设备已在实验室规模上进行了演示,包括压力、触摸和质量传感器、麦克风、自持振荡器、量子霍尔器件、射频前端滤波器、开关、光子调制器等。这些新颖的 NEMS 设备将在未来的机器人、电子、医疗保健、汽车、航空航天等领域得到应用。从实验室规模设备向二维 NEMS 大规模制造的转变必须克服许多关键挑战。其中一些挑战,例如最小化纳米级缺陷以及提高器件产量和性能,已通过采用少层石墨烯或石墨烯聚合物异质结构膜得到解决。然而,新型二维 NEMS 器件的未来制造仍然面临一个关键的突出挑战。众所周知,二维层具有显着的内置拉应力和压应力,这些应力都是任意分布且难以控制。这些问题既源于它们的生长方式,也源于它们在 NEMS 制造过程中从一个表面转移到另一个表面的方式。在 2-D NEMS 设备的纳米制造中,这些内置应力必须在每个设备内以及所有设备上均匀呈现。在该项目中,这将通过开发一种新工艺来实现,该工艺将在从母体转移到目标 NEMS 基板的过程中向二维膜施加良好控制的双轴拉伸应变。该应变不仅会确保悬浮膜在所有设备上均匀,产生的预张力还将增加膜的刚度,从而提高最终 NEMS 设备的谐振品质因数。此外,可以通过控制预张力来调节装置的静态和动态灵敏度及其谐振频率。同样重要的是,实时监测所施加的应变以及所得膜中的残余应变。在这个项目中,我们将基于二维材料中的应变可以通过其标志性拉曼光谱峰的变化来检测这一事实来实施原位应变监测。该项目将使英国在晶圆级领域处于领先地位以及卷对卷二维 NEMS 制造,以英国在 MEMS 铸造厂、印刷电子、二维材料生产以及传感器和执行器方面的现有优势为基础。这反过来将有力地促进传感器、医疗保健、通信、汽车和航空航天等其他广泛制造行业的健康发展。 2-D NEMS 将支持各种下一代设备和技术,使我们的社会变得更加高效、互联、健康和有弹性。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanically Stable Ultrathin Layered Graphene Nanocomposites Alleviate Residual Interfacial Stresses: Implications for Nanoelectromechanical Systems.
  • DOI:
    10.1021/acsanm.2c03955
  • 发表时间:
    2022-12-23
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Vassaux, Maxime;Muller, Werner A.;Suter, James L.;Vijayaraghavan, Aravind;Coveney, Peter, V
  • 通讯作者:
    Coveney, Peter, V
Modeling Graphene-Polymer Heterostructure MEMS Membranes with the Föppl-von Kármán Equations.
  • DOI:
    10.1021/acsami.2c21096
  • 发表时间:
    2023-02-07
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Smith, Katherine;Retallick, Aidan;Melendrez, Daniel;Vijayaraghavan, Aravind;Heil, Matthias
  • 通讯作者:
    Heil, Matthias
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aravind Vijayaraghavan其他文献

A Two-Bit-per-Cell Content-Addressable Memory Using Single-Electron Transistors, Multiple-Valued and Mixed-Mode Logic
使用单电子晶体管、多值和混合模式逻辑的每单元两位内容可寻址存储器
Back-gate effect on Coulomb blockade in silicon-on-insulator trench wires
绝缘体上硅沟槽线中库仑阻塞的背栅效应
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    小野;行徳;Nicolas Clement;Aravind Vijayaraghavan;出川 勝彦;西口 克彦
  • 通讯作者:
    西口 克彦

Aravind Vijayaraghavan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aravind Vijayaraghavan', 18)}}的其他基金

Suspended graphene and carbon nanotube device arrays by bottom-up assembly
自下而上组装的悬浮石墨烯和碳纳米管器件阵列
  • 批准号:
    EP/K009451/1
  • 财政年份:
    2013
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Research Grant

相似国自然基金

单细胞中多种肾素-血管紧张素系统相关酶活性同时分析的纳米孔道新方法
  • 批准号:
    22304077
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
丘脑腹后外侧核中星形胶质细胞来源紧张性抑制电流在神经病理性疼痛中的作用及机制研究
  • 批准号:
    82360235
  • 批准年份:
    2023
  • 资助金额:
    32.2 万元
  • 项目类别:
    地区科学基金项目
PLIN5介导脂滴-线粒体接触在血管紧张素Ⅱ诱导足细胞脂毒性损伤中的作用及机制
  • 批准号:
    82300767
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管紧张素肽原在节律紊乱引起的PCOS排卵障碍中的作用及机制
  • 批准号:
    82301839
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肾副交感神经通过肾素-血管紧张素系统对血压的调控作用及机制
  • 批准号:
    82300503
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Contorted and Strained Molecular Nanographenes: Multi-Electron Storage and Reduction-Induced Transformations
扭曲和应变的分子纳米石墨烯:多电子存储和还原诱导的转变
  • 批准号:
    2404031
  • 财政年份:
    2024
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Continuing Grant
Harnessing the Reactivity of Strained Macrocycles to Access Discrete Carbon Nanostructures
利用应变大环化合物的反应性来获得离散的碳纳米结构
  • 批准号:
    2400147
  • 财政年份:
    2024
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Standard Grant
New molecular shapes from strained aromatic foldamer macrocycles and their application to development of PPI inhibitors
应变芳香折叠大环化合物的新分子形状及其在 PPI 抑制剂开发中的应用
  • 批准号:
    23KK0134
  • 财政年份:
    2023
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Design, Synthesis and Evaluation of Functional Benzosiloles and New Reactions of Strained Carbocycles
功能性苯并硅杂环化合物和应变碳环新反应的设计、合成和评价
  • 批准号:
    RGPIN-2021-03925
  • 财政年份:
    2022
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Exploring Novel Chemical Space: Modular Synthesis of Biologically Relevant Strained Molecules
职业:探索新的化学空间:生物相关应变分子的模块化合成
  • 批准号:
    2143925
  • 财政年份:
    2022
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了