Mechanisms and Synthesis of Materials for Next-Generation Lithium Batteries Using Flame Spray Pyrolysis
利用火焰喷雾热解制备下一代锂电池材料的机理和合成
基本信息
- 批准号:EP/T015233/1
- 负责人:
- 金额:$ 49.44万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Electricity has emerged as a preferred energy vector for both conventional and renewable energy, thanks to its versatility and the vast existing electrical infrastructure. The electrification of the transport sector is a natural development to make use of energy from a wide variety of sources, and to reduce CO2 emissions and combat urban air pollution. The UK government plans to ban sale of all diesel and petrol cars and vans from 2040, following similar moves by France and Germany. Globally, the number of electric vehicles (EVs) is projected to rise from about 1 million in 2015 to 300 million in 2040. Achieving these goals requires dramatically improved performance and lowered costs of batteries for EV use. Lithium-ion batteries (LIBs) are promising, but enhanced materials for electrodes, especially the cathode, are needed to meet the power density and costs requirements for the next-generation EVs and energy storage systems. The research aims to generate fundamental knowledge and develop experimental and numerical tools for the controlled synthesis of high-performance cathode materials for LIBs with the inherent potential to be scaled to large throughput production. The materials will be based on layered, multi-element metal oxides (MOs) and carbon-metal oxides (CMOs). Among these, the nickel manganese cobalt oxides (NMCs) with various metal contents and surface features, which are favoured by mainstream automotive companies, will be the main target for the research, though the research and production techniques will be applicable for a large class of MOs and CMOs. Conventionally, MOs can be produced via solid state, sol-gel, and co-precipitation methods and combinations thereof, followed by high temperature annealing processes without or with carbon coating. Such multi-step synthesis routes are time- and energy-consuming, and require delicate control of the surrounding conditions. A promising alternative is flame spray pyrolysis (FSP), in which a precursor solution is atomised to produce a large number of evaporating droplets that are carried into a heated reactor or burned with a flame to form nanoparticles. FSP can offer a one-step, high throughput, easy-to-handle, scalable and continuous process, with a wide range of precursor solutions. It allows good control and, importantly, decoupling of the production process from the gas-phase chemistry process, creating the potential to produce designer materials at scale and low cost. The project is a collaboration between Cambridge University (Simone Hochgreb in flame synthesis; Adam Boies in nanoparticle synthesis; Michael De Volder in nanomaterial and batteries) and UCL (Kai Luo in modelling and simulation). A combined experimental and numerical study will be conducted to reveal the dynamic processes of and controlling mechanisms behind particle formation, growth and coating. At the microscopic level, the detailed transport and chemical reactions will be unravelled; at the mesoscopic level, factors affecting phase change and particle growth will be identified; and at the macroscopic level, the input parameters and time scales of key processes will be linked with quality of MO and CMO products. The experiments involve cutting-edge in-situ and ex-situ measurements to qualify and quantify the synthesis process. The modelling and simulation include advanced mesoscopic simulations of droplet dynamics and evaporation; and atomistic simulations of precursor pyrolysis, particle formation and growth. The fundamental insights gained, and tools and production techniques developed will be exploited for controlled flame synthesis of materials that are directly tied to battery performance metrics, in collaboration with four companies (CATL, Echion Tech, PV3 Technologies and STFET). These companies' activities cover the technology readiness levels (TRLs) from 2 to 9, providing valuable inputs to the research and multiple routes to exploitation of research outputs.
由于其多功能性和庞大的现有电力基础设施,电力已成为传统能源和可再生能源的首选能源载体。交通运输部门的电气化是利用多种来源的能源、减少二氧化碳排放和应对城市空气污染的自然发展。继法国和德国采取类似举措后,英国政府计划从 2040 年起禁止销售所有柴油和汽油汽车和货车。全球范围内,电动汽车 (EV) 数量预计将从 2015 年的约 100 万辆增加到 2040 年的 3 亿辆。要实现这些目标,需要大幅提高电动汽车使用电池的性能并降低成本。锂离子电池(LIB)前景广阔,但需要增强电极材料,特别是阴极材料,以满足下一代电动汽车和储能系统的功率密度和成本要求。该研究旨在产生基础知识并开发实验和数值工具,用于可控合成锂离子电池高性能阴极材料,并具有扩大到大批量生产的内在潜力。这些材料将基于层状多元素金属氧化物(MO)和碳金属氧化物(CMO)。其中,受到主流汽车企业青睐的各种金属含量和表面特征的镍锰钴氧化物(NMC)将是研究的主要目标,但研究和生产技术将适用于一大类产品。 MO 和 CMO。传统上,MO可以通过固态、溶胶-凝胶和共沉淀方法及其组合来生产,然后进行不带或带碳涂层的高温退火工艺。这种多步合成路线既耗时又耗能,并且需要对周围条件进行精细控制。一种有前途的替代方案是火焰喷雾热解(FSP),其中前体溶液被雾化以产生大量蒸发液滴,这些液滴被带入加热反应器或用火焰燃烧以形成纳米颗粒。 FSP 可以提供一步式、高通量、易于处理、可扩展和连续的工艺,以及广泛的前驱体解决方案。它可以实现良好的控制,更重要的是,可以将生产过程与气相化学过程分离,从而创造了大规模、低成本生产设计材料的潜力。该项目是剑桥大学(Simone Hochgreb 负责火焰合成;Adam Boies 负责纳米颗粒合成;Michael De Volder 负责纳米材料和电池)和伦敦大学学院(Kai Luo 负责建模和模拟)之间的合作。将进行实验和数值相结合的研究,以揭示颗粒形成、生长和涂层背后的动态过程和控制机制。在微观层面上,详细的传输和化学反应将被阐明;在介观层面,将确定影响相变和颗粒生长的因素;在宏观层面,关键工序的输入参数和时间尺度将与MO和CMO产品的质量挂钩。这些实验涉及尖端的原位和异位测量,以限定和量化合成过程。建模和模拟包括液滴动力学和蒸发的高级介观模拟;以及前体热解、颗粒形成和生长的原子模拟。与四家公司(CATL、Echion Tech、PV3 Technologies 和 STFET)合作,所获得的基本见解以及开发的工具和生产技术将用于与电池性能指标直接相关的材料的受控火焰合成。这些公司的活动涵盖从 2 到 9 的技术准备水平 (TRL),为研究提供有价值的投入,并为利用研究成果提供多种途径。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atomic Insights into Mechanisms of Carbon Coating on Titania Nanoparticle During Flame Synthesis
火焰合成过程中二氧化钛纳米粒子碳涂层机制的原子洞察
- DOI:10.2139/ssrn.4127759
- 发表时间:2022-09-01
- 期刊:
- 影响因子:0
- 作者:Dingyu Hou;Q. Mao;Yihua Ren;K. Luo
- 通讯作者:K. Luo
Atomic insights into mechanisms of carbon coating on titania nanoparticle during flame synthesis
火焰合成过程中二氧化钛纳米粒子碳涂层机制的原子洞察
- DOI:http://dx.10.18154/rwth-2022-09477
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hou D
- 通讯作者:Hou D
A reactive force field molecular dynamics study on the inception mechanism of titanium tetraisopropoxide (TTIP) conversion to titanium clusters
四异丙醇钛(TTIP)转化为钛簇起始机制的反作用力场分子动力学研究
- DOI:10.1016/j.ces.2022.117496
- 发表时间:2022-02-01
- 期刊:
- 影响因子:4.7
- 作者:Dingyu Hou;Muye Feng;Jili Wei;Yi Wang;A. V. van Duin;Kai Luo
- 通讯作者:Kai Luo
Atomic insights into mechanisms of carbon coating on titania nanoparticle during flame synthesis
火焰合成过程中二氧化钛纳米粒子碳涂层机制的原子洞察
- DOI:http://dx.10.1016/j.carbon.2022.09.002
- 发表时间:2023
- 期刊:
- 影响因子:10.9
- 作者:Hou D
- 通讯作者:Hou D
Pore-scale study of coke formation and combustion in porous media using lattice Boltzmann method
使用格子玻尔兹曼方法研究多孔介质中焦炭的形成和燃烧
- DOI:http://dx.10.1016/j.proci.2022.09.053
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Lei T
- 通讯作者:Lei T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kai Luo其他文献
Influence of nano-SiO2 and carbonation on the performance of natural hydraulic lime mortars
纳米SiO2和碳化对天然水硬石灰砂浆性能的影响
- DOI:
10.1016/j.conbuildmat.2019.117411 - 发表时间:
2020-02-28 - 期刊:
- 影响因子:7.4
- 作者:
Kai Luo;J. Li;Qing Han;Zhongyuan Lu;Xinrui Deng;Lian;Yunhui Niu;Jun Jiang;Xiaoying Xu;Pan Cai - 通讯作者:
Pan Cai
Uplink Spectral Efficiency Analysis of Decoupled Access in Multiuser MIMO Communications
多用户 MIMO 通信中解耦接入的上行频谱效率分析
- DOI:
- 发表时间:
2016-05-27 - 期刊:
- 影响因子:0
- 作者:
Ran Li;Kai Luo;Tao Jiang;Shi Jin - 通讯作者:
Shi Jin
Updating strategy based architecture for reference picture management in H.264/AVC
更新 H.264/AVC 中参考图像管理的基于策略的架构
- DOI:
10.1109/icasic.2007.4415606 - 发表时间:
2007-10-01 - 期刊:
- 影响因子:0
- 作者:
Kai Luo;Dongxiao Li;Lianghao Wang;Ming Zhang - 通讯作者:
Ming Zhang
Power system fault harmonic analysis based on improved particle swarm optimization algorithm
基于改进粒子群优化算法的电力系统故障谐波分析
- DOI:
10.1063/1.5089057 - 发表时间:
2019-01-29 - 期刊:
- 影响因子:0
- 作者:
Kai Luo - 通讯作者:
Kai Luo
Key technologies, engineering management and important suggestions of shale oil/gas development: Case study of a Duvernay shale project in Western Canada Sedimentary Basin
页岩油气开发关键技术、工程管理及重要建议——以加拿大西部沉积盆地Duvernay页岩项目为例
- DOI:
10.1016/s1876-3804(20)60094-5 - 发表时间:
2020-08-01 - 期刊:
- 影响因子:7.5
- 作者:
Guoxin Li;Kai Luo;Deqing Shi - 通讯作者:
Deqing Shi
Kai Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kai Luo', 18)}}的其他基金
UK Consortium on Mesoscale Engineering Sciences (UKCOMES)
英国中尺度工程科学联盟 (UKCOMES)
- 批准号:
EP/X035875/1 - 财政年份:2023
- 资助金额:
$ 49.44万 - 项目类别:
Research Grant
Exascale Computing for System-Level Engineering: Design, Optimisation and Resilience
用于系统级工程的百亿亿次计算:设计、优化和弹性
- 批准号:
EP/V001531/1 - 财政年份:2020
- 资助金额:
$ 49.44万 - 项目类别:
Research Grant
Enhancement and Control of Turbulent Reactive Flows via Electrical Fields - A Mesoscopic Perspective
通过电场增强和控制湍流反应流 - 介观视角
- 批准号:
EP/S012559/1 - 财政年份:2019
- 资助金额:
$ 49.44万 - 项目类别:
Research Grant
UK Consortium on Mesoscale Engineering Sciences (UKCOMES)
英国中尺度工程科学联盟 (UKCOMES)
- 批准号:
EP/R029598/1 - 财政年份:2018
- 资助金额:
$ 49.44万 - 项目类别:
Research Grant
Thermal and Reactive Flow Simulation on High-End Computers
高端计算机上的热流和反应流模拟
- 批准号:
EP/J016381/2 - 财政年份:2014
- 资助金额:
$ 49.44万 - 项目类别:
Research Grant
HIGH PERFORMANCE COMPUTING SUPPORT FOR UNITED KINGDOM CONSORTIUM ON TURBULENT REACTING FLOWS (UKCTRF)
为英国湍流反应流联盟 (UKCTRF) 提供高性能计算支持
- 批准号:
EP/K024876/1 - 财政年份:2014
- 资助金额:
$ 49.44万 - 项目类别:
Research Grant
Tackling Combustion Instability in Low-Emission Energy Systems: Mathematical Modelling, Numerical Simulations and Control Algorithms
解决低排放能源系统中的燃烧不稳定性:数学建模、数值模拟和控制算法
- 批准号:
EP/I016570/2 - 财政年份:2013
- 资助金额:
$ 49.44万 - 项目类别:
Research Grant
UK Consortium on Mesoscale Engineering Sciences (UKCOMES)
英国中尺度工程科学联盟 (UKCOMES)
- 批准号:
EP/L00030X/1 - 财政年份:2013
- 资助金额:
$ 49.44万 - 项目类别:
Research Grant
Thermal and Reactive Flow Simulation on High-End Computers
高端计算机上的热流和反应流模拟
- 批准号:
EP/J016381/1 - 财政年份:2012
- 资助金额:
$ 49.44万 - 项目类别:
Research Grant
Tackling Combustion Instability in Low-Emission Energy Systems: Mathematical Modelling, Numerical Simulations and Control Algorithms
解决低排放能源系统中的燃烧不稳定性:数学建模、数值模拟和控制算法
- 批准号:
EP/I016570/1 - 财政年份:2011
- 资助金额:
$ 49.44万 - 项目类别:
Research Grant
相似国自然基金
锂硫电池双原子催化材料的精准合成、协同作用机制及动态演变规律
- 批准号:22379036
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Cu纳米线基复合材料光电协同催化NOx还原合成氨及机制研究
- 批准号:22305157
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
连续流微反应器内纳米颗粒材料合成的结垢机制及无垢化调控策略研究
- 批准号:22378381
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
原位合成(Al2O3+B4Cp)/Al复合材料组织调控机制及其高温变形机理
- 批准号:52301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
手性识别功能高分子材料的设计合成、识别机制及应用
- 批准号:52373217
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Targeted Synthesis of Biomass-derived Carbon Materials (TSBCM): structural evolution mechanisms, regulating strategies, and application demonstration
生物质碳材料的靶向合成(TSBCM):结构演化机制、调控策略和应用示范
- 批准号:
EP/Z000742/1 - 财政年份:2024
- 资助金额:
$ 49.44万 - 项目类别:
Fellowship
Mechanisms and Synthesis of Materials for Next-Generation Lithium Batteries Using Flame Spray Pyrolysis
利用火焰喷雾热解制备下一代锂电池材料的机理和合成
- 批准号:
EP/T015845/1 - 财政年份:2020
- 资助金额:
$ 49.44万 - 项目类别:
Research Grant
Innovative technologies to transform antibiotic discovery. Project 3 Rapid Access to Antibiotic Biosynthesis Machinery Using Synthetic Biology
改变抗生素发现的创新技术。
- 批准号:
10670193 - 财政年份:2019
- 资助金额:
$ 49.44万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Project 3 Rapid Access to Antibiotic Biosynthesis Machinery Using Synthetic Biology
改变抗生素发现的创新技术。
- 批准号:
10242005 - 财政年份:2019
- 资助金额:
$ 49.44万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Project 3 Rapid Access to Antibiotic Biosynthesis Machinery Using Synthetic Biology
改变抗生素发现的创新技术。
- 批准号:
10463691 - 财政年份:2019
- 资助金额:
$ 49.44万 - 项目类别: