Room-Temperature Single Atom Silicon Quantum Electronics
室温单原子硅量子电子学
基本信息
- 批准号:EP/V030035/1
- 负责人:
- 金额:$ 70.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In recent years, it has become possible to define semiconductor quantum electronic switches in silicon using individual impurity atoms within a semiconductor crystal. This reduces the switching 'core' of an electronic device to the ultimate, atomic scale limit. Furthermore, electronic charge in the discrete, quantum states of the impurity atom may be controlled at the level of individual electrons, also reducing the size of information 'bits' from many thousands to a few, or even single electrons. 'Single-atom quantum dot transistors' (SA-QDTs) such as these hold great promise for a wide range of applications, including ultra-low power highly scaled nanoelectronics, single charge/molecule sensors, metrological standards and quantum computation. Achieving wide-scale, general application of SA-QDTs, e.g. in nanoelectronics or ultra-high sensitivity sensing, requires both room-temperature (RT) operation and large-scale manufacturability. However, at present the potential of these devices has remained unfulfilled, due to problems such as electrical operation at only cryogenic temperatures, the use of materials lacking large scale device manufacturability, or a lack of compatibility with current silicon electronic circuits technology, etc. Recently, we have demonstrated RT operation in silicon SA-QDTs based on phosphorus (P) dopant atoms embedded in ~10 nm scale Si-SiO2-Si point-contacts, fabricated by electron beam lithography. Both single and double, coupled, QD RT operation have now been demonstrated. The fabrication of these devices in silicon is completely compatible with conventional large-scale, Si electronic circuit nanofabrication technology. In complementary work to the above, we have also demonstrated methods to locate impurity atoms at precise atomic scales using advanced scanning probe lithographic (SPL) techniques.The central aim of this project is to develop useful RT SA-QDT devices, circuits and sensors in silicon. In doing this we propose to move from the present level of individual devices to 'proof-of-principle' RT circuits with ~10 devices. We will also develop single-molecule sensors based on SA-QDTs, exploiting the sensitivity of these devices to changes in surface charge at the level of <1e. We propose to build memory cell, logic gate and single-molecule sensor circuits, using both electron-beam and scanning probe lithographic methods. We will also extend our fabrication methods for atomically precise nanofabrication using hydrogen depassivation SPL, to establish structural precision at this scale for the first time in devices operating at RT. Simulation methods, from the individual device to circuit level, will be developed to establish design rules for single-atom electronic systems. Successful completion of this project will realise the potential of single-atom devices for quantum nanoelectronic circuits and single-molecule sensors, opening the way for a future large-scale atomic electronics technology.
近年来,使用半导体晶体中的个体杂质原子来定义硅中的半导体量子电子开关。这将电子设备的开关“核心”降低到了最终的原子量表极限。此外,在离散的,杂质原子的量子状态中的电子电荷可以在单个电子的水平上控制,也可以将信息“位”的大小从数千个甚至几个电子中减少到几个,甚至单个电子。 “单原子量子点晶体管”(SA-QDT)(例如SA-QDT)对广泛的应用有很大的希望,包括超低功率高度缩放的纳米电子学,单电荷/分子传感器,计量标准和量子计算。实现大规模的SA-QDT的一般应用,例如在纳米电子学或超高灵敏度感应中,需要室温(RT)操作和大规模的制造性。但是,目前,由于仅在低温温度下进行电气操作,缺乏大规模设备的材料的使用,或与当前硅电子电路技术技术缺乏兼容性等问题,这些设备的潜力仍然无法实现。点接触,由电子束光刻制造。现在已经证明了单一和双重QD RT操作。这些设备在硅中的制造与常规的大规模SI电子电路纳米化技术完全兼容。在上述互补工作中,我们还展示了使用先进的探针光刻(SPL)技术以精确的原子尺度定位杂质原子的方法。该项目的主要目的是开发有用的RT SA-QDT设备,电路和硅的传感器。在这样做的过程中,我们建议从目前的单个设备级别转移到具有约10个设备的“原理证明” RT电路。我们还将基于SA-QDT开发单分子传感器,从而利用这些设备对<1e水平的表面电荷变化的敏感性。我们建议使用电子梁和扫描探针光刻方法来构建存储单元,逻辑门和单分子传感器电路。我们还将使用氢Deposivation SPL扩展我们的制造方法,用于原子上精确的纳米化,以在RT运行的设备中首次在此规模上建立结构性精度。将开发从单个设备到电路级别的仿真方法,以建立单原子电子系统的设计规则。该项目的成功完成将实现单原子设备用于量子纳米电路和单分子传感器的潜力,从而为未来的大规模原子电子技术开辟了道路。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dark-field optical fault inspection of ~10 nm scale room-temperature silicon single-electron transistors
~10 nm 级室温硅单电子晶体管的暗场光学故障检查
- DOI:10.1088/1361-6528/acfb10
- 发表时间:2023
- 期刊:
- 影响因子:3.5
- 作者:He W
- 通讯作者:He W
Quantum Szilard cycle and information-entropy exchange in a room-temperature dopant atom double quantum dot transistor
室温掺杂原子双量子点晶体管中的量子西拉德循环和信息熵交换
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:F. Abualnaja
- 通讯作者:F. Abualnaja
Single particle entropy stability and the temperature-entropy diagram in quantum dot transistors
- DOI:10.1103/physrevresearch.5.033025
- 发表时间:2023-07
- 期刊:
- 影响因子:4.2
- 作者:Faris Abualnaja;W. He;A. Andreev;Mervyn Jones;Z. Durrani
- 通讯作者:Faris Abualnaja;W. He;A. Andreev;Mervyn Jones;Z. Durrani
Room temperature Szilard cycle and entropy exchange at the Landauer limit in a dopant atom double quantum dot silicon transistor
- DOI:10.1088/1361-6463/ac66a8
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Z. Durrani;Faris Abualnaja;Mervyn E. Jones
- 通讯作者:Z. Durrani;Faris Abualnaja;Mervyn E. Jones
Device fabrication for investigating Maxwell's Demon at room-temperature using double quantum dot transistors in silicon
- DOI:10.1016/j.mne.2022.100114
- 发表时间:2022-02-28
- 期刊:
- 影响因子:0
- 作者:Abualnaja, Faris;He, Wenkun;Durrani, Zahid
- 通讯作者:Durrani, Zahid
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zahid Durrani其他文献
Zahid Durrani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
气候变化和城市化下温度和湿度协同作用的复合型高温事件研究
- 批准号:42301021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑温度效应的钙质砂−土工格栅界面宏细观力学特性研究
- 批准号:52301327
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于温度调制的重金属废水多组分光谱长效在线检测方法
- 批准号:62303073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于结构调控荧光寿命型温度探针的构筑及热成像应用
- 批准号:12374372
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
Cpx双组分系统响应温度变化调控灵菌红素合成的分子机制研究
- 批准号:32370040
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Room-Temperature Single Atom Silicon Quantum Electronics
室温单原子硅量子电子学
- 批准号:
EP/V027700/1 - 财政年份:2021
- 资助金额:
$ 70.81万 - 项目类别:
Research Grant
Characterization of single and laminated electrical steel sheets under static and cyclic loads at room and elevated temperature
室温和高温静态和循环载荷下单层和层压电工钢板的表征
- 批准号:
556432-2020 - 财政年份:2021
- 资助金额:
$ 70.81万 - 项目类别:
Alliance Grants
Characterization of single and laminated electrical steel sheets under static and cyclic loads at room and elevated temperature
室温和高温静态和循环载荷下单层和层压电工钢板的表征
- 批准号:
556432-2020 - 财政年份:2020
- 资助金额:
$ 70.81万 - 项目类别:
Alliance Grants
Investigation of the Room Temperature Brittle-to-Ductile Transition of Single-Crystal Silicon at Sub-Micron Length Scale Using Accelerated Molecular Dynamics
利用加速分子动力学研究亚微米长度尺度单晶硅的室温脆性转变
- 批准号:
1940614 - 财政年份:2020
- 资助金额:
$ 70.81万 - 项目类别:
Standard Grant
A Large Bandwidth Room Temperature Single Photon Source
大带宽室温单光子源
- 批准号:
428456730 - 财政年份:2019
- 资助金额:
$ 70.81万 - 项目类别:
Priority Programmes