A single-crystal X-ray diffractometer for the structural analysis of molecular compounds, macromolecules and materials

用于分子化合物、大分子和材料结构分析的单晶 X 射线衍射仪

基本信息

  • 批准号:
    EP/V028995/1
  • 负责人:
  • 金额:
    $ 87.67万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Understanding the structure of chemical compounds is of paramount importance in understanding their behaviour, physical properties and reactivity. Single crystal X-ray diffraction (SXRD) is a critical analytical technique for the analysis of materials including molecules, supra- and macro-molecular compounds (e.g. proteins), and extended solids. It is, unquestionably, the most powerful analytical technique available for the characterisation of compounds with ordered structures, and as such, is widely used by a broad scientific user base including chemists, materials scientists and physicists. X-ray analysis has driven enormous advances in chemistry, materials science and beyond. The U.K. has pioneered the development and application of this technique as evidenced by the award of Nobel Prizes to W. H. Bragg and W. L. Bragg (Physics 1915) and to D. M. C. Hodgkin (Chemistry 1964) for their seminal contributions to the field. It is still routinely used in laboratories worldwide, however conventional commercial diffractometers have reached the limit of their utility for the analysis of certain samples. As our control of chemical reactivity has advanced, so too has the complexity of the compounds we produce. Nowadays chemists routinely produce molecules and solids that are increasingly elaborate, which in turn creates significant problems for conventional X-ray diffraction. The crystals obtained for such compounds tend to be smaller than for routine samples, and diffraction can be weaker due to disorder and/or defects in their structure. This requires increasingly powerful X-ray sources and highly sensitive detectors. In order to address this issue, scientists have made use of highly intense X-ray radiation from synchrotron sources (e.g. I19 at the Diamond Light Source), however access to such facilities is, understandably, time-limited and highly competitive.Modern state-of-the-art diffractometers, such as the instrument for which we are bidding, rival the performance offered by synchrotrons allowing for the 'in-house' analysis of increasingly complex systems. They also enable exploratory time-intensive research (such as the measurement of single-crystal-to-single-crystal transformations, or variable temperature measurements to probe fluxionality) that would be prohibitively time-consuming at national facilities. The increased utility of such instruments is due to colossal advances in X-ray sources, and particularly, in X-ray detector technology. These advances have opened up fascinating new opportunities in the solid-state characterisation of molecules, which allow for the study of highly complex chemical systems (e.g. molecular machines or biologically relevant macromolecules). Moreover, access to such powerful instruments without time constraints permits for the exploratory study of compounds at broad temperature ranges in order to correlate structural changes with data available from other complementary analytical techniques such as magnetic resonance (NMR and EPR) or SQUID magnetometry. This will open up new opportunities in the characterisation of molecules and solids which will drive forward cutting-edge research and ensure that the U.K. remains at the forefront of scientific research in years to come. The impact of this research will be felt by researchers working across the physical and life sciences, and ultimately, by the global population as such science drives future advances in healthcare, the development of a circular economy and the design of new technologies which will have an impact on our everyday lives.
了解化合物的结构对于理解其行为,物理性质和反应性至关重要。单晶X射线衍射(SXRD)是一种关键的分析技术,用于分析包括分子,上和大分子化合物(例如蛋白质)和扩展固体在内的材料分析。毫无疑问,这是最强大的分析技术,可用于表征具有有序结构的化合物,因此,它被广泛的科学用户基础广泛使用,包括化学家,材料科学家和物理学家。 X射线分析推动了化学,材料科学及其他方面的巨大进步。英国率先开发和应用了这项技术,这是由W. H. Bragg和W. L. Bragg(Physics 1915)和D. M. C. Hodgkin(Chemistry 1964)授予诺贝尔奖的奖励所证明的。它仍在全球实验室中常规使用,但是传统的商业衍射仪已达到其效用以分析某些样品的极限。随着我们对化学反应性的控制已经提高,我们产生的化合物的复杂性也是如此。如今,化学家通常会产生越来越复杂的分子和固体,这又为常规的X射线衍射带来了重大问题。对于此类化合物获得的晶体往往比常规样品小,并且由于其结构中的无序和/或缺陷,衍射可能更弱。这需要越来越强大的X射线源和高度敏感的探测器。为了解决这个问题,科学家们利用了同步源的高度激烈的X射线辐射(例如,在钻石光源处的I19),但是可以理解的是,可以使用这种设施的时间是限时的,并且是竞争力的。当前的衍射仪(例如我们要竞标的仪器)与同步器提供的性能相媲美,允许对日益复杂的系统进行“内部”分析。它们还实现了探索性的时间密集型研究(例如,在国家设施中,在国家设施中会非常耗时,这些研究的测量值是测量单晶至单一晶体转换或可变的温度测量值以探测易变性。此类工具的效用增加是由于X射线源,尤其是X射线探测器技术的巨大进步所致。这些进步为分子的固态表征打开了引人入胜的新机会,这些机会允许研究高度复杂的化学系统(例如分子机或生物学相关的大分子)。此外,在没有时间限制的情况下访问此类强大的仪器,可以允许对广泛温度范围的化合物进行探索性研究,以便将结构变化与其他互补分析技术(例如磁共振)(NMR和EPR)或squid磁力仪等其他互补分析技术可用的数据相关联。这将为分子和固体的表征开辟新的机会,这些机会将推动前进的研究,并确保英国在未来几年中仍然处于科学研究的最前沿。这项研究的影响将受到跨物理和生命科学工作的研究人员的影响,最终,全球人口最终会随着这种科学的发展,循环经济的发展以及新技术的设计驱动了未来的进步影响我们的日常生活。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthesis of Cyclopropanes via Hydrogen-Borrowing Catalysis.
  • DOI:
    10.1021/acs.orglett.3c01768
  • 发表时间:
    2023-07-21
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Crompton, Jessica L.;Frost, James R.;Rowe, Sam M.;Christensen, Kirsten E.;Donohoe, Timothy J.
  • 通讯作者:
    Donohoe, Timothy J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Goicoechea其他文献

Jose Goicoechea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Goicoechea', 18)}}的其他基金

Novel Molecules and Solids Derived from the Cyaphide Ion
源自 Cyaphide 离子的新型分子和固体
  • 批准号:
    2348777
  • 财政年份:
    2024
  • 资助金额:
    $ 87.67万
  • 项目类别:
    Standard Grant
Beyond cyanide: Future synthons based on the cyaphide and cyarside ions for the synthesis of designer magnetic coordination polymers
超越氰化物:基于氰化物和氰化物离子的未来合成子,用于合成设计师磁性配位聚合物
  • 批准号:
    EP/T010681/1
  • 财政年份:
    2020
  • 资助金额:
    $ 87.67万
  • 项目类别:
    Research Grant
Mapping the chemistry of phosphorus-containing analogues of urea. From fundamental chemistry to high-performance compounds and materials.
绘制尿素含磷类似物的化学图谱。
  • 批准号:
    EP/M027732/1
  • 财政年份:
    2015
  • 资助金额:
    $ 87.67万
  • 项目类别:
    Research Grant
Exploring alternative phosphorus and heavier pnictogen feedstocks for bespoke chemical transformations
探索用于定制化学转化的替代磷和重质氮原料
  • 批准号:
    EP/K039954/1
  • 财政年份:
    2013
  • 资助金额:
    $ 87.67万
  • 项目类别:
    Research Grant
Synthesis of novel nanometric clusters by controlled oxidation of negatively-charged metal species
通过带负电的金属物质的受控氧化合成新型纳米簇
  • 批准号:
    EP/F00186X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 87.67万
  • 项目类别:
    Research Grant

相似国自然基金

桂西碳酸盐岩区水晶矿的成因特征研究
  • 批准号:
    41962004
  • 批准年份:
    2019
  • 资助金额:
    42 万元
  • 项目类别:
    地区科学基金项目
无氟无硝法剔除替代水晶的国产硅矿石金属杂质制备高档全透明石英材料加工过程与工艺机理研究
  • 批准号:
    21978076
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
磷酸化和可变剪切修饰影响Bnip3调控线粒体自噬和细胞凋亡的结构及功能研究
  • 批准号:
    31670742
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
替代氢氧焰熔融水晶制备全透明石英玻璃的石英砂中ppm级羟基剔除机理研究
  • 批准号:
    51674114
  • 批准年份:
    2016
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
川南峨眉山玄武岩中罕见的含沥青原生绿泥石与沥青杏仁体研究
  • 批准号:
    41562003
  • 批准年份:
    2015
  • 资助金额:
    44.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Development of highly efficient and stable photon-counting type X-ray detectors using single crystal metal halide perovskite semiconductors
利用单晶金属卤化物钙钛矿半导体开发高效稳定的光子计数型X射线探测器
  • 批准号:
    24K15592
  • 财政年份:
    2024
  • 资助金额:
    $ 87.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MRI: Track 1 Acquisition of a Single-Crystal X-ray Diffractometer to Support Primarily Undergraduate Research in the Greater Susquehanna Valley
MRI:轨道 1 采购单晶 X 射线衍射仪,主要支持大萨斯奎哈纳山谷的本科生研究
  • 批准号:
    2320461
  • 财政年份:
    2023
  • 资助金额:
    $ 87.67万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a Single Crystal X-Ray Diffractometer for Structure Determination of Molecules and Materials at Primarily Undergraduate Institutions
设备: MRI:轨道 1 采购单晶 X 射线衍射仪,用于主要本科机构的分子和材料结构测定
  • 批准号:
    2320694
  • 财政年份:
    2023
  • 资助金额:
    $ 87.67万
  • 项目类别:
    Standard Grant
Single Crystal X-Ray Diffractometer
单晶X射线衍射仪
  • 批准号:
    507807574
  • 财政年份:
    2023
  • 资助金额:
    $ 87.67万
  • 项目类别:
    Major Research Instrumentation
A Single-Crystal X-ray Diffractometer for High-Power, High-Throughput Chemical Crystallography
用于高功率、高通量化学晶体学的单晶 X 射线衍射仪
  • 批准号:
    EP/X013332/1
  • 财政年份:
    2023
  • 资助金额:
    $ 87.67万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了