Designer Aluminium Precursors for the Inkjet Printing of Electrical Circuits

用于喷墨印刷电路的设计师铝前驱体

基本信息

  • 批准号:
    EP/V027611/1
  • 负责人:
  • 金额:
    $ 52.97万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Printed electronics are becoming integrated into every part of modern-day life, from light-emitting diodes, to solar cells and printed biosensors such as wearable electronics. The flexible electronics market alone is predicted to be valued at $74 billion by 2030. Whilst the technology already exists to manufacture large-scale flexible electronics, by way of the environmentally friendly, roll-to-roll industrial processes which employ inkjet printing, currently the metal inks that are employed have their limitations. The patterning of molten metals is incompatible with affordable flexible materials, including renewable eco-friendly plastics or paper, this mismatch is due to, in part, the high melting point of metals (often over a thousand degrees) and the deformation temperature of a range of plastic, paper or fabric materials being considerably lower (ca. 100 - 200 degrees Celcius). Current techniques used in the production of printed electronics are time consuming and expensive multi step-techniques that require the use of toxic chemicals. These state-of-the-art techniques require metal flakes/particles to be 'melted' together, resulting in contaminants between layers, which reduce overall conductivity of the metal.An obvious solution to this problem is the use of specially designed inks, containing small molecules that can be printed into any desired pattern onto any material, and then be thermally 'activated' at low temperatures, in order to convert them to conductive metal. This project aims to design and synthesise new small molecules in order to improve the performance of existing printing technologies. These would provide a tuneable alternative to the current industrial nanoparticle inks based on silver or copper whose activation temperatures are too high for printing onto many materials. In addition, understanding how the structure of a small molecule can influence its ability to act as a precursor to the metal is challenging, and gaining insight will enable us to adjust thermal activation temperatures, such that after printing, it can yield highly conductive metal.Aluminium metal is earth abundant, boasts conductivity comparable to silver and copper and yet has never been used industrially to inkjet print conductive tracks. This is because suitable precursors do not exist, despite the rich field of synthetic aluminium chemistry. To overcome this problem, we propose to adapt our small molecule design to be better compatible with modern lower temperature deposition techniques. To reap the benefits of using printing techniques for device fabrication inks that will transform at low temperatures (affording compatibility with low cost flexible materials) will be produced. This project will create a library of novel highly performing inks from aluminium which can be printed and sintered in air on low cost flexible materials for incorporation into electronic devices. The aim of this project is to develop new small molecules containing aluminium, formulate these into metal inks and subsequently print highly conductive metal features onto low cost flexible materials for use in electronic devices.
印刷电子产品正在融入现代生活的各个部分,从发光二极管到太阳能电池和印刷生物传感器(例如可穿戴电子产品)。预计到 2030 年,仅柔性电子产品市场的价值就将达到 740 亿美元。虽然已经存在通过采用喷墨印刷的环保卷对卷工业流程制造大规模柔性电子产品的技术,但目前所使用的金属油墨有其局限性。熔融金属的图案与经济实惠的柔性材料(包括可再生环保塑料或纸张)不相容,这种不匹配部分是由于金属的高熔点(通常超过一千度)和一定范围的变形温度塑料、纸张或织物材料的温度要低得多(约 100 - 200 摄氏度)。当前用于生产印刷电子产品的技术是耗时且昂贵的多步骤技术,需要使用有毒化学品。这些最先进的技术需要将金属薄片/颗粒“熔化”在一起,从而导致层与层之间产生污染物,从而降低金属的整体电导率。解决此问题的一个明显的解决方案是使用专门设计的墨水,其中包含小分子可以在任何材料上打印成任何所需的图案,然后在低温下被热“激活”,以便将它们转化为导电金属。该项目旨在设计和合成新的小分子,以提高现有打印技术的性能。这些将为当前基于银或铜的工业纳米颗粒墨水提供可调节的替代品,银或铜的激活温度太高,无法在许多材料上进行印刷。此外,了解小分子的结构如何影响其作为金属前体的能力具有挑战性,而获得洞察力将使我们能够调整热活化温度,以便在打印后可以产生高导电性金属。铝金属在地球上储量丰富,具有与银和铜相当的导电性,但从未在工业上用于喷墨打印导电轨道。这是因为尽管合成铝化学领域非常丰富,但并不存在合适的前体。为了克服这个问题,我们建议调整我们的小分子设计,以更好地与现代低温沉积技术兼容。为了获得使用印刷技术进行设备制造的好处,将生产在低温下变形的油墨(提供与低成本柔性材料的兼容性)。该项目将创建一个由铝制成的新型高性能油墨库,这些油墨可以在低成本柔性材料上在空气中印刷和烧结,以便融入电子设备中。该项目的目的是开发新的含铝小分子,将其配制成金属油墨,然后将高导电金属特征印刷到低成本柔性材料上,用于电子设备。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Room Temperature Electronic Functionalization of Thermally Sensitive Substrates by Inkjet Printing of a Reactive Silver-Based MOD Ink
  • DOI:
    10.1002/admt.202201557
  • 发表时间:
    2023-01-20
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Zhou,Ye;Xu,Zongpu;Knapp,Caroline E.
  • 通讯作者:
    Knapp,Caroline E.
Tris(ß-ketoiminate) Aluminium(III) Compounds as Aluminium Oxide Precursors.
作为氧化铝前体的三(α-酮亚胺)铝(III)化合物。
  • DOI:
    10.1002/cplu.202200411
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Douglas SP
  • 通讯作者:
    Douglas SP
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caroline Knapp其他文献

Caroline Knapp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Caroline Knapp', 18)}}的其他基金

PAPIER - Plasma Assisted Printing of Metal Inks with Enhanced Resistivity
PAPIER - 具有增强电阻率的金属油墨的等离子辅助印刷
  • 批准号:
    EP/Y001877/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Research Grant

相似国自然基金

基于开式筒壳液压成形钢/铝层合板变形机理及界面演变行为
  • 批准号:
    52305402
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高铝钢连铸保护渣中Li2O的行为特性与微观作用机制
  • 批准号:
    52374325
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于氮化铝绝缘层的多晶铝-锡共掺杂氧化铟薄膜晶体管研究
  • 批准号:
    62304090
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
铝污泥基层状多孔海绵宏观材料对水中磷酸盐吸附动力学研究
  • 批准号:
    42377060
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于粒子激发形核的异质结构碳纳米管/铝复合材料及其强韧化机制
  • 批准号:
    52301197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Impact of impurity elements on the corrosion performance of high strength 6xxx aluminium alloys
杂质元素对高强6xxx铝合金腐蚀性能的影响
  • 批准号:
    2906344
  • 财政年份:
    2024
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Studentship
Developing aluminium-sulfur batteries with high voltage and low cost
开发高电压、低成本铝硫电池
  • 批准号:
    DE240100952
  • 财政年份:
    2024
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Discovery Early Career Researcher Award
Aluminium at the centre of sustainable catalysis
铝是可持续催化的核心
  • 批准号:
    FT230100565
  • 财政年份:
    2024
  • 资助金额:
    $ 52.97万
  • 项目类别:
    ARC Future Fellowships
EPSRC-SFI Aluminium-Rich Nitride Electronics (ARNE)
EPSRC-SFI 富铝氮化物电子器件 (ARNE)
  • 批准号:
    EP/X036901/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Research Grant
H2GLASS - advancing Hydrogen (H2) technologies and smart production systems TO decarbonise the GLass and Aluminium SectorS
H2GLASS - 先进的氢 (H2) 技术和智能生产系统,使玻璃和铝行业脱碳
  • 批准号:
    10063137
  • 财政年份:
    2023
  • 资助金额:
    $ 52.97万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了