Cooling molecules to quantum degeneracy
将分子冷却至量子简并
基本信息
- 批准号:EP/V011499/1
- 负责人:
- 金额:$ 186.41万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Everyone is familiar with the three normal states of matter - solids, liquids and gases. There is also another state, known as a Bose-Einstein condensate (BEC), which is a state of matter that can be described only by quantum mechanics. Due to the uncertainty relation between position and speed, an atom spreads out when it slows down. If a gas of atoms is cooled to very low temperature, the atoms may spread out so much that they all overlap. At this point they coordinate, all gathering together into the quantum state that has the lowest energy, and behaving as a single entity instead of a collection of individuals. This state of matter was predicted in 1924 by Bose and Einstein, and in 1995 researchers created it for the first time by cooling a gas of atoms to less than a microkelvin (a millionth of a degree above absolute zero). Bose-Einstein condensation underlies some extraordinary phenomena such as superfluidity and superconductivity.The study of BECs of atoms has been an immensely fruitful research topic for the last 25 years, and there are strong motivations to extend this to molecules. Importantly, molecules can be polar, having a positive end and a negative end. Due to these electric dipoles, molecules can interact with one another far more strongly than atoms and over much larger distances. In fact, in a BEC of polar molecules, every molecule interacts with every other molecule, creating a strongly interacting quantum system. From these interacting systems emerge new and remarkable phenomena that could not be predicted from the behaviour of the constituents and are far too complex to simulate on a normal computer. Examples include magnetism and high-temperature superconductivity. A molecular BEC would be an ideal, highly controllable system for studying these interacting quantum systems. It may also contribute to the development of quantum computers and improve our understanding of collisions and chemistry at low temperatures. Finally, such low temperatures would hugely improve the precision of ongoing experiments that use molecules to test fundamental physics, such as measurements that search for the origins of matter-antimatter asymmetry.Despite all this motivation, molecules have not yet been cooled to the low temperatures needed for BEC. We aim to do that in this project. We will first use laser cooling, which is a method we have pioneered for molecules over the last few years. Then we will trap the molecules and use collisions to cool them further. Here, there are two approaches. In the first - evaporative cooling - the highest-energy molecules are removed from the trap and the remaining molecules collide and re-distribute the reduced energy, thereby cooling to lower temperatures. In the second - sympathetic cooling - the molecules cool as they collide with atoms at lower temperature. In addition to these crucial temperature-lowering collisions, there can also be bad collisions that cause molecules to change their state, react, or be ejected from the trap. The key to success is to control these collisions, enhancing the good ones and suppressing the bad ones. Our combination of theoretical and experimental expertise will be our guide. The BEC we produce will be a completely new type of quantum matter, whose nature is governed by the strong, long-range dipole-dipole interactions. We will study its behaviour and learn how to control it using electric and magnetic fields, opening up a rich new field of strongly-interacting dipolar matter.
每个人都熟悉物质的三种正常状态——固体、液体和气体。还有另一种状态,称为玻色-爱因斯坦凝聚体(BEC),这是一种只能用量子力学描述的物质状态。由于位置和速度之间的不确定关系,原子在减速时会扩散。如果原子气体被冷却到非常低的温度,原子可能会扩散得太多以致于它们全部重叠。此时,它们进行协调,全部聚集到具有最低能量的量子态,并且表现为单个实体而不是个体的集合。玻色和爱因斯坦于 1924 年预测了这种物质状态,并于 1995 年通过将原子气体冷却到低于微开尔文(绝对零以上的百万分之一度),首次创造了这种物质状态。玻色-爱因斯坦凝聚是超流性和超导性等一些非凡现象的基础。在过去 25 年里,原子 BEC 的研究一直是一个硕果累累的研究课题,并且有强烈的动机将其扩展到分子。重要的是,分子可以是极性的,具有正极和负极。由于这些电偶极子,分子之间的相互作用比原子更强烈,并且距离也更远。事实上,在极性分子的 BEC 中,每个分子都与其他分子相互作用,形成一个强相互作用的量子系统。从这些相互作用的系统中会出现新的、显着的现象,这些现象无法从成分的行为中预测出来,而且过于复杂,无法在普通计算机上进行模拟。例子包括磁性和高温超导性。分子 BEC 将是研究这些相互作用的量子系统的理想的、高度可控的系统。它还可能有助于量子计算机的发展,并提高我们对低温下碰撞和化学的理解。最后,如此低的温度将极大地提高正在进行的使用分子测试基础物理的实验的精度,例如寻找物质-反物质不对称性起源的测量。尽管有这些动机,分子还没有被冷却到低温BEC 需要。我们的目标是在这个项目中做到这一点。我们将首先使用激光冷却,这是我们在过去几年中首创的分子冷却方法。然后我们将捕获分子并利用碰撞进一步冷却它们。这里有两种方法。在第一个过程中 - 蒸发冷却 - 最高能量的分子从陷阱中去除,剩余的分子碰撞并重新分配减少的能量,从而冷却到较低的温度。在第二种情况下——交感冷却——分子在与较低温度的原子碰撞时冷却。除了这些关键的降低温度的碰撞之外,还可能存在导致分子改变状态、发生反应或从陷阱中弹出的不良碰撞。成功的关键是控制这些冲突,增强好的冲突,抑制坏的冲突。我们的理论和实验专业知识的结合将成为我们的指南。我们生产的 BEC 将是一种全新类型的量子物质,其性质由强的长程偶极子-偶极子相互作用决定。我们将研究它的行为并学习如何使用电场和磁场控制它,开辟一个丰富的强相互作用偶极物质新领域。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shielding collisions of ultracold CaF molecules with static electric fields
屏蔽超冷 CaF 分子与静电场的碰撞
- DOI:10.1103/physrevresearch.5.033097
- 发表时间:2023
- 期刊:
- 影响因子:4.2
- 作者:Mukherjee B
- 通讯作者:Mukherjee B
Quantum Computation in a Hybrid Array of Molecules and Rydberg Atoms
分子和里德伯原子混合阵列中的量子计算
- DOI:10.1103/prxquantum.3.030340
- 发表时间:2022
- 期刊:
- 影响因子:9.7
- 作者:Zhang C
- 通讯作者:Zhang C
Collisions in a dual-species magneto-optical trap of molecules and atoms
分子和原子双物质磁光陷阱中的碰撞
- DOI:10.1088/1367-2630/ac0c9a
- 发表时间:2021
- 期刊:
- 影响因子:3.3
- 作者:Jurgilas S
- 通讯作者:Jurgilas S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Tarbutt其他文献
Michael Tarbutt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Tarbutt', 18)}}的其他基金
Ultracold EEDM - Measuring The Electron's Electric Dipole Moment Using Ultracold Molecules
超冷 EEDM - 使用超冷分子测量电子的电偶极矩
- 批准号:
EP/X030180/1 - 财政年份:2023
- 资助金额:
$ 186.41万 - 项目类别:
Research Grant
An optical frequency comb to support the quantum technology for fundamental physics programme
支持基础物理项目量子技术的光学频率梳
- 批准号:
ST/X005046/1 - 财政年份:2022
- 资助金额:
$ 186.41万 - 项目类别:
Research Grant
Accelerating the development of novel clocks for measuring varying fundamental constants
加速开发用于测量不同基本常数的新型时钟
- 批准号:
ST/W006197/1 - 财政年份:2022
- 资助金额:
$ 186.41万 - 项目类别:
Research Grant
A network of clocks for measuring the stability of fundamental constants
用于测量基本常数稳定性的时钟网络
- 批准号:
ST/T006234/1 - 财政年份:2021
- 资助金额:
$ 186.41万 - 项目类别:
Research Grant
Ultracold eEDM: a new experiment to measure the electron's electric dipole moment using ultracold moelcules
超冷 eEDM:利用超冷分子测量电子电偶极矩的新实验
- 批准号:
ST/S000011/1 - 财政年份:2018
- 资助金额:
$ 186.41万 - 项目类别:
Research Grant
Magneto-optical trapping and sympathetic cooling of molecules
分子的磁光捕获和交感冷却
- 批准号:
EP/M027716/1 - 财政年份:2015
- 资助金额:
$ 186.41万 - 项目类别:
Research Grant
Collisions of Polar Molecules with Ultracold Alkali Metal Atoms (IP3 of EuroQUAM CoPoMol)
极性分子与超冷碱金属原子的碰撞(EuroQUAM CoPoMol 的 IP3)
- 批准号:
EP/E038603/1 - 财政年份:2007
- 资助金额:
$ 186.41万 - 项目类别:
Research Grant
相似国自然基金
冷却秦川牛肉贮藏中肌红蛋白衍生态转化的量子与分子机制
- 批准号:32160535
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
量子模拟光合作用等生物分子现象
- 批准号:11774284
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
制备量子态可控的超冷极性分子离子的研究
- 批准号:11474317
- 批准年份:2014
- 资助金额:110.0 万元
- 项目类别:面上项目
中性分子的有效减速与sub-mK光学冷却的探索及其应用研究
- 批准号:11034002
- 批准年份:2010
- 资助金额:273.0 万元
- 项目类别:重点项目
冷分子光学的探索
- 批准号:10434060
- 批准年份:2004
- 资助金额:160.0 万元
- 项目类别:重点项目
相似海外基金
冷却原子・分子の量子エンタングル状態を用いたEDM探索
使用冷原子和分子的量子纠缠态进行 EDM 搜索
- 批准号:
23K25893 - 财政年份:2024
- 资助金额:
$ 186.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
冷却分子の量子エンタングル状態を用いた電子EDM探索
使用冷却分子的量子纠缠态进行电子 EDM 搜索
- 批准号:
22KJ1163 - 财政年份:2023
- 资助金额:
$ 186.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
レーザー冷却放射性同位元素による反物質消滅機構の解明
使用激光冷却放射性同位素阐明反物质湮灭机制
- 批准号:
22KJ1175 - 财政年份:2023
- 资助金额:
$ 186.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
冷却原子・分子の量子エンタングル状態を用いたEDM探索
使用冷原子和分子的量子纠缠态进行 EDM 搜索
- 批准号:
23H01197 - 财政年份:2023
- 资助金额:
$ 186.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
超低温分子の内部自由度を利用した誤り耐性量子計算の実現
利用超冷分子内部自由度实现容错量子计算
- 批准号:
22KJ1949 - 财政年份:2023
- 资助金额:
$ 186.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows