Quantitative estimates of discretisation and modelling errors in variational data assimilation for incompressible flows
不可压缩流变分数据同化中离散化和建模误差的定量估计
基本信息
- 批准号:EP/T033126/1
- 负责人:
- 金额:$ 63.64万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The assimilation of data in computational models is a very importanttask in predictive science in the natural environment. In particularfor weather forcasting and biological flow problems such ascardiovascular flows, measured data must be used to complete themodel. More often than not the available data is not compatible withthe partial differential equations modelling the physicalphenomenon. The problem is ill-posed. Under certain mild assumption onthe model and measurement errors one can nevertheless use the modeltogether with the data to obtain computational predictions, typicallyusing Tikhonov regularisation to control instabilities due to theill-posed character. Two important tools for this are 3DVAR and4DVAR. These are variational data assimilation methods that, by andlarge, look for a solution minimising some norm of the differencebetween the solution to the measurements, or to a so called backgroundstate in case it exists, under the constraint of the physical pde model, in our case represented by a partial differential equation. The difference between 3DVAR and 4DVAR is that in 3DVAR data assimilation time evolution is not accounted for. It is therefore applicable only to stationary problem or to repeated assimilation of data ``snapshots'' followed by evolution. In 4DVAR data is expected to be distributed in space time and all space time data is used to produce the assimilated solution.-- In spite of the important literature on the topic of data assimilation using 3DVAR/4DVAR there appears to be no rigorous numerical analysis for two or three dimensional problems (for an exception in one space dimension see [JBFS15]) combining the effect on the solution of (a) modelling errors; (b) discretisation of the partial differential equations; (c) perturbation due to regularisation; (d) perturbations of the measured data.-- The aim of the present project is to provide sharp rigorous estimates for the effect on the approximate solution of points (a-d) above in the challenging case of incompressible flow problems. The derivation of such estimates will give a clear indication on whattype of regularisations are optimal and also what kind of quantities can reasonably be approximated given a set of measured data. Typically the tendency in computational methodsis to evolve from low order approaches to high resolution methods. Theambition is to design and analyse such high resolution methods forvariational data assimilation problems.
计算模型中数据的同化是自然环境中预测科学中非常重要的任务。尤其是在天气开发和生物流动问题之类的诸如鞘内血管流的情况下,必须使用测量的数据来完成theodel。通常,可用数据与对物理苯甲瘤建模的部分微分方程不兼容。这个问题是错误的。在对模型和测量误差的某些温和假设下,人们可以将模型与数据合并来获得计算预测,通常使用Tikhonov正则化来控制由于座位的特征而导致的不稳定性。两个重要的工具是3DVAR和4DVAR。这些是变异数据同化方法,通过andlarge,在我们的情况下,在我们案例以部分微分方程为代表的情况下,通过且在物理PDE模型的约束下,将解决方案之间的某些差异或所谓背景状态之间的差异的某些规范。 3DVAR和4DVAR之间的区别在于,在3DVAR数据同化时间中未考虑。因此,它仅适用于固定问题或重复同化数据``快照'',然后进化。在4DVAR中,预计将在时空分布,并使用所有时间时间数据来产生同化的解决方案。-尽管使用3DVAR/4DVAR的重要文献进行了有关数据同化的重要文献,但对于两个或三维问题似乎没有严格的数值分析(对于一个空间减小中,请参见[JBfs15]的模型),该材料的模型是在[Jbfs15]中的模型。 (b)偏微分方程的离散化; (c)由于正则化而引起的扰动; (d)测量数据的扰动。-本项目的目的是在挑战性的不可压缩流问题的情况下,对上面的点(A-d)的近似解决方案(A-D)的影响提供了严格的严格估计。此类估计的推导将清楚地表明正规化的何种典型是最佳的,并且在一组测量数据的情况下,可以合理地近似哪种数量。通常,计算方法中的趋势是从低阶方法演变为高分辨率方法的趋势。 theambition是设计和分析这种高分辨率方法的外界数据同化问题。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A pressure-robust discretization of Oseen's equation using stabilization in the vorticity equation
- DOI:10.1137/20m1351230
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:N. Ahmed;G. Barrenechea;E. Burman;Johnny Guzm'an;A. Linke;C. Merdon
- 通讯作者:N. Ahmed;G. Barrenechea;E. Burman;Johnny Guzm'an;A. Linke;C. Merdon
Continuous interior penalty stabilization for divergence-free finite element methods
无散有限元方法的连续内罚稳定
- DOI:10.1093/imanum/drad030
- 发表时间:2023
- 期刊:
- 影响因子:2.1
- 作者:Barrenechea G
- 通讯作者:Barrenechea G
The Unique Continuation Problem for the Heat Equation Discretized with a High-Order Space-Time Nonconforming Method
- DOI:10.1137/22m1508637
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Erik Burman;G. Delay;Alexandre Ern
- 通讯作者:Erik Burman;G. Delay;Alexandre Ern
Error Estimates for the Smagorinsky Turbulence Model: Enhanced Stability Through Scale Separation and Numerical Stabilization
- DOI:10.1007/s00021-021-00633-8
- 发表时间:2021-01
- 期刊:
- 影响因子:1.3
- 作者:E. Burman;P. Hansbo;M. Larson
- 通讯作者:E. Burman;P. Hansbo;M. Larson
Eulerian time-stepping schemes for the non-stationary Stokes equations on time-dependent domains
- DOI:10.1007/s00211-021-01264-x
- 发表时间:2019-10
- 期刊:
- 影响因子:2.1
- 作者:E. Burman;S. Frei;A. Massing
- 通讯作者:E. Burman;S. Frei;A. Massing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erik Burman其他文献
Solving the unique continuation problem for Schrödinger equations with low regularity solutions using a stabilized finite element method
使用稳定有限元方法求解具有低正则解的薛定谔方程的唯一连续问题
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Erik Burman;Mingfei Lu;L. Oksanen - 通讯作者:
L. Oksanen
Unique continuation for the wave equation based on a discontinuous Galerkin time discretization
基于不连续伽辽金时间离散化的波动方程的唯一延拓
- DOI:
10.48550/arxiv.2405.04615 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Erik Burman;Janosch Preuss - 通讯作者:
Janosch Preuss
A Nitsche-based formulation for fluid-structure interactions with contact
基于 Nitche 的接触流固耦合公式
- DOI:
10.1051/m2an/2019072 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Erik Burman;Miguel A Fernández;Stefan Frei - 通讯作者:
Stefan Frei
A stability estimate for data assimilation subject to the heat equation with initial datum
初始数据热方程下数据同化的稳定性估计
- DOI:
10.5802/crmath.506 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Erik Burman;G. Delay;Alexandre Ern;L. Oksanen - 通讯作者:
L. Oksanen
Optimal Approximation of Unique Continuation
唯一连续的最优逼近
- DOI:
10.1007/s10208-024-09655-w - 发表时间:
2024 - 期刊:
- 影响因子:3
- 作者:
Erik Burman;Mihai Nechita;L. Oksanen - 通讯作者:
L. Oksanen
Erik Burman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erik Burman', 18)}}的其他基金
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
- 批准号:
EP/X042650/1 - 财政年份:2024
- 资助金额:
$ 63.64万 - 项目类别:
Research Grant
Computational methods for inverse problems subject to wave equations in heterogeneous media
异质介质中波动方程反问题的计算方法
- 批准号:
EP/V050400/1 - 财政年份:2021
- 资助金额:
$ 63.64万 - 项目类别:
Research Grant
Geometrically unfitted finite element methods for inverse identification of geometries and shape optimization
用于几何反演和形状优化的几何不拟合有限元方法
- 批准号:
EP/P01576X/1 - 财政年份:2017
- 资助金额:
$ 63.64万 - 项目类别:
Research Grant
Computational methods for multiphysics interface problems
多物理场接口问题的计算方法
- 批准号:
EP/J002313/2 - 财政年份:2013
- 资助金额:
$ 63.64万 - 项目类别:
Research Grant
Computational methods for multiphysics interface problems
多物理场接口问题的计算方法
- 批准号:
EP/J002313/1 - 财政年份:2012
- 资助金额:
$ 63.64万 - 项目类别:
Research Grant
相似国自然基金
基于稀疏空时频表示的低轨导航多径信号参数估计
- 批准号:62303482
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机缺失下纵向数据的多重稳健估计
- 批准号:12361057
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
基于Cramér-Rao下限最优准则的DSInSAR参数优化选取与形变估计方法研究
- 批准号:42304041
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动态牵制策略下复杂网络的完全分布式弹性估计与同步控制
- 批准号:62303434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
未知攻击环境下信息物理系统安全估计与智能防护研究
- 批准号:62303212
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Improving Estimates of Changing Firn Meltwater Storage and Flux in Temperate Glacier Systems
职业:改进对温带冰川系统中冰雪融水储存和通量变化的估计
- 批准号:
2239668 - 财政年份:2023
- 资助金额:
$ 63.64万 - 项目类别:
Continuing Grant
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
- 批准号:
23K07844 - 财政年份:2023
- 资助金额:
$ 63.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards establishing accurate estimates of national chronic hepatitis B prevalence and undiagnosed proportion in Canada
准确估计加拿大全国慢性乙型肝炎患病率和未确诊比例
- 批准号:
488763 - 财政年份:2023
- 资助金额:
$ 63.64万 - 项目类别:
Operating Grants
FUTURE-FLOOD: New estimates of evolving UK flood risk for improved climate resilience
未来洪水:对英国不断变化的洪水风险的新估计,以提高气候适应能力
- 批准号:
NE/X014134/1 - 财政年份:2023
- 资助金额:
$ 63.64万 - 项目类别:
Research Grant
Real-World Data Estimates of Racial Fairness with Pharmacogenomics-Guided Drug Policy
以药物基因组学为指导的药物政策对种族公平性的真实世界数据估计
- 批准号:
10797705 - 财政年份:2023
- 资助金额:
$ 63.64万 - 项目类别: