Quantitative estimates of discretisation and modelling errors in variational data assimilation for incompressible flows
不可压缩流变分数据同化中离散化和建模误差的定量估计
基本信息
- 批准号:EP/T033126/1
- 负责人:
- 金额:$ 63.64万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The assimilation of data in computational models is a very importanttask in predictive science in the natural environment. In particularfor weather forcasting and biological flow problems such ascardiovascular flows, measured data must be used to complete themodel. More often than not the available data is not compatible withthe partial differential equations modelling the physicalphenomenon. The problem is ill-posed. Under certain mild assumption onthe model and measurement errors one can nevertheless use the modeltogether with the data to obtain computational predictions, typicallyusing Tikhonov regularisation to control instabilities due to theill-posed character. Two important tools for this are 3DVAR and4DVAR. These are variational data assimilation methods that, by andlarge, look for a solution minimising some norm of the differencebetween the solution to the measurements, or to a so called backgroundstate in case it exists, under the constraint of the physical pde model, in our case represented by a partial differential equation. The difference between 3DVAR and 4DVAR is that in 3DVAR data assimilation time evolution is not accounted for. It is therefore applicable only to stationary problem or to repeated assimilation of data ``snapshots'' followed by evolution. In 4DVAR data is expected to be distributed in space time and all space time data is used to produce the assimilated solution.-- In spite of the important literature on the topic of data assimilation using 3DVAR/4DVAR there appears to be no rigorous numerical analysis for two or three dimensional problems (for an exception in one space dimension see [JBFS15]) combining the effect on the solution of (a) modelling errors; (b) discretisation of the partial differential equations; (c) perturbation due to regularisation; (d) perturbations of the measured data.-- The aim of the present project is to provide sharp rigorous estimates for the effect on the approximate solution of points (a-d) above in the challenging case of incompressible flow problems. The derivation of such estimates will give a clear indication on whattype of regularisations are optimal and also what kind of quantities can reasonably be approximated given a set of measured data. Typically the tendency in computational methodsis to evolve from low order approaches to high resolution methods. Theambition is to design and analyse such high resolution methods forvariational data assimilation problems.
计算模型中的数据同化是自然环境中预测科学的一项非常重要的任务。特别是对于天气预报和心血管流量等生物流问题,必须使用测量数据来完成模型。通常,可用数据与模拟物理现象的偏微分方程不兼容。问题是不适定的。在模型和测量误差的某种温和假设下,我们仍然可以将模型与数据一起使用来获得计算预测,通常使用吉洪诺夫正则化来控制由于不适定特征而导致的不稳定性。两个重要的工具是 3DVAR 和 4DVAR。这些是变分数据同化方法,总的来说,在物理偏微分方程模型的约束下,在我们的例子中,寻找一种解决方案,使测量结果之间的差异最小化,或者所谓的背景状态(如果存在)由偏微分方程表示。 3DVAR 和 4DVAR 之间的区别在于,3DVAR 数据同化时间演化没有被考虑在内。因此,它仅适用于静止问题或数据“快照”的重复同化,然后进行演化。在 4DVAR 中,数据预计分布在时空中,并且所有时空数据都用于生成同化解。-- 尽管有关于使用 3DVAR/4DVAR 数据同化主题的重要文献,但似乎没有严格的数值分析对于二维或三维问题(对于一维空间的例外情况,请参见 [JBFS15]),结合 (a) 建模误差的解的影响; (b) 偏微分方程的离散化; (c) 正则化引起的扰动; (d) 测量数据的扰动。--本项目的目的是在不可压缩流动问题的挑战性情况下,对上述点 (a-d) 的近似解的影响提供精确的严格估计。这种估计的推导将清楚地表明哪种类型的正则化是最佳的,以及在给定一组测量数据的情况下可以合理地近似哪种数量。通常,计算方法的趋势是从低阶方法发展到高分辨率方法。我们的目标是设计和分析用于变分数据同化问题的高分辨率方法。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A pressure-robust discretization of Oseen's equation using stabilization in the vorticity equation
- DOI:10.1137/20m1351230
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:N. Ahmed;G. Barrenechea;E. Burman;Johnny Guzm'an;A. Linke;C. Merdon
- 通讯作者:N. Ahmed;G. Barrenechea;E. Burman;Johnny Guzm'an;A. Linke;C. Merdon
Continuous interior penalty stabilization for divergence-free finite element methods
无散有限元方法的连续内罚稳定
- DOI:10.1093/imanum/drad030
- 发表时间:2023
- 期刊:
- 影响因子:2.1
- 作者:Barrenechea G
- 通讯作者:Barrenechea G
The Unique Continuation Problem for the Heat Equation Discretized with a High-Order Space-Time Nonconforming Method
- DOI:10.1137/22m1508637
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Erik Burman;G. Delay;Alexandre Ern
- 通讯作者:Erik Burman;G. Delay;Alexandre Ern
Error Estimates for the Smagorinsky Turbulence Model: Enhanced Stability Through Scale Separation and Numerical Stabilization
- DOI:10.1007/s00021-021-00633-8
- 发表时间:2021-01
- 期刊:
- 影响因子:1.3
- 作者:E. Burman;P. Hansbo;M. Larson
- 通讯作者:E. Burman;P. Hansbo;M. Larson
Eulerian time-stepping schemes for the non-stationary Stokes equations on time-dependent domains
- DOI:10.1007/s00211-021-01264-x
- 发表时间:2019-10
- 期刊:
- 影响因子:2.1
- 作者:E. Burman;S. Frei;A. Massing
- 通讯作者:E. Burman;S. Frei;A. Massing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erik Burman其他文献
Solving the unique continuation problem for Schrödinger equations with low regularity solutions using a stabilized finite element method
使用稳定有限元方法求解具有低正则解的薛定谔方程的唯一连续问题
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Erik Burman;Mingfei Lu;L. Oksanen - 通讯作者:
L. Oksanen
Unique continuation for the wave equation based on a discontinuous Galerkin time discretization
基于不连续伽辽金时间离散化的波动方程的唯一延拓
- DOI:
10.48550/arxiv.2405.04615 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Erik Burman;Janosch Preuss - 通讯作者:
Janosch Preuss
A Nitsche-based formulation for fluid-structure interactions with contact
基于 Nitche 的接触流固耦合公式
- DOI:
10.1051/m2an/2019072 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Erik Burman;Miguel A Fernández;Stefan Frei - 通讯作者:
Stefan Frei
A stability estimate for data assimilation subject to the heat equation with initial datum
初始数据热方程下数据同化的稳定性估计
- DOI:
10.5802/crmath.506 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Erik Burman;G. Delay;Alexandre Ern;L. Oksanen - 通讯作者:
L. Oksanen
Optimal Approximation of Unique Continuation
唯一连续的最优逼近
- DOI:
10.1007/s10208-024-09655-w - 发表时间:
2024 - 期刊:
- 影响因子:3
- 作者:
Erik Burman;Mihai Nechita;L. Oksanen - 通讯作者:
L. Oksanen
Erik Burman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erik Burman', 18)}}的其他基金
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
- 批准号:
EP/X042650/1 - 财政年份:2024
- 资助金额:
$ 63.64万 - 项目类别:
Research Grant
Computational methods for inverse problems subject to wave equations in heterogeneous media
异质介质中波动方程反问题的计算方法
- 批准号:
EP/V050400/1 - 财政年份:2021
- 资助金额:
$ 63.64万 - 项目类别:
Research Grant
Geometrically unfitted finite element methods for inverse identification of geometries and shape optimization
用于几何反演和形状优化的几何不拟合有限元方法
- 批准号:
EP/P01576X/1 - 财政年份:2017
- 资助金额:
$ 63.64万 - 项目类别:
Research Grant
Computational methods for multiphysics interface problems
多物理场接口问题的计算方法
- 批准号:
EP/J002313/2 - 财政年份:2013
- 资助金额:
$ 63.64万 - 项目类别:
Research Grant
Computational methods for multiphysics interface problems
多物理场接口问题的计算方法
- 批准号:
EP/J002313/1 - 财政年份:2012
- 资助金额:
$ 63.64万 - 项目类别:
Research Grant
相似国自然基金
关于丢番图方程小素数解上界估计的研究
- 批准号:12301005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
顾及个体时空行为的人口分布动态模拟与估计
- 批准号:42301527
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于非渐近估计的复杂微电网故障诊断与运行稳定性控制理论研究
- 批准号:62303133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于稀疏空时频表示的低轨导航多径信号参数估计
- 批准号:62303482
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自适应多频干扰估计与补偿的水下机器人精准运动控制技术研究
- 批准号:52301390
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Towards establishing accurate estimates of national chronic hepatitis B prevalence and undiagnosed proportion in Canada
准确估计加拿大全国慢性乙型肝炎患病率和未确诊比例
- 批准号:
488763 - 财政年份:2023
- 资助金额:
$ 63.64万 - 项目类别:
Operating Grants
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
- 批准号:
23K07844 - 财政年份:2023
- 资助金额:
$ 63.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FUTURE-FLOOD: New estimates of evolving UK flood risk for improved climate resilience
未来洪水:对英国不断变化的洪水风险的新估计,以提高气候适应能力
- 批准号:
NE/X014134/1 - 财政年份:2023
- 资助金额:
$ 63.64万 - 项目类别:
Research Grant
CAREER: Improving Estimates of Changing Firn Meltwater Storage and Flux in Temperate Glacier Systems
职业:改进对温带冰川系统中冰雪融水储存和通量变化的估计
- 批准号:
2239668 - 财政年份:2023
- 资助金额:
$ 63.64万 - 项目类别:
Continuing Grant
Real-World Data Estimates of Racial Fairness with Pharmacogenomics-Guided Drug Policy
以药物基因组学为指导的药物政策对种族公平性的真实世界数据估计
- 批准号:
10797705 - 财政年份:2023
- 资助金额:
$ 63.64万 - 项目类别: