BOiliNg flows in SmAll and mIcrochannels (BONSAI): From Fundamentals to Design

小和微通道中的沸腾流 (BONSAI):从基础知识到设计

基本信息

  • 批准号:
    EP/T03338X/1
  • 负责人:
  • 金额:
    $ 107.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

BONSAI is an ambitious 3-year research project aimed at investigating the fundamental heat and mass transfer features of boiling flows in miniaturised channels. It combines cutting-edge experiments based on space/time-resolved diagnostics, with high-fidelity interface-resolving numerical simulations, to ultimately provide validated thermal-design tools for high-performance compact evaporators. The proposed project assembles multidisciplinary expertise of investigators at Imperial College London, Brunel University London, and the University of Nottingham, with support from 3 world-leading research institutes: Alan Turing Institute, CERN (Switzerland) and VIR2AL; and 11 industry partners: Aavid Boyd Thermacore, Alfa Laval, CALGAVIN, HEXAG&PIN, HiETA, Hubbard/Daikin, IBM, Oxford nanoSystems, Ricardo, TMD and TTP.The recent trend towards device miniaturisation driven by the microelectronics industry has placed an increasing demand on removing higher thermal loads, of order of MW/m2, from areas of order cm2. In some applications (e.g. refrigeration) new 'green' refrigerants are needed, but in small volumes due to flammability or cost, while in others (e.g. batteries for EV and other applications) non-uniform or unsteady heat dissipation is highly detrimental to performance and lifetime. Flow boiling in multi-microchannel evaporators promises to meet such challenging requirements with low fluid volumes, also allowing better temperature uniformity and smaller pumping power, in systems that go well beyond the current state-of-the-art. Due to significant industrial (heat exchange) and environmental (efficient energy use) interest, the understanding of boiling heat transfer has improved in recent years, with focus on flow pattern transitions and characteristics, pressure drop, and heat transfer performance. However, our current understanding is simply insufficient to facilitate the wider use of these micro-heat-exchangers in industry, which remains unexploited.BONSAI has been tailored specifically to address the fundamental phenomena underlying boiling in miniaturised devices and their relevance to industrial design. The challenges to be addressed include the impact of channel shape and surface characteristics on flow instabilities, heat transfer and pressure drop, and the relationship between the time-dependent evolution of the liquid-vapour interface, thin liquid-film dynamics, flow field, appearance of dry vapour patches, hot spots, and local heat transfer characteristics. The extensive experimental/numerical database generated will be exploited via theoretical and novel machine-learning methods to develop physics-based design tools for predicting the effects of industrially-relevant thermohydraulic parameters on system performance. The collaboration with our partners will ensure alignment with industrial needs and accelerate technology transfer to industry. In addition, HiETA will provide Metal Additive Manufacturing heat sinks that will be assessed against embossing technologies as ways of mass-producing microchannel heat exchangers, Oxford nanoSystems will provide nano-structured surface coatings, and IBM will support visits to their Research Labs focussed on efficient parallelisation of the numerical solver and scale-out studies.The proposed research will not only enable a wider adoption of two-phase thermal solutions and hence the meeting of current and future needs across industrial sectors, but also will lead to more efficient thermal management of data-centres with associated reduction in energy consumption and carbon footprint, and the recovery and reuse of waste heat that is currently being rejected. This will constitute an important step towards meeting the UK's emission targets by 2050. Additionally, BONSAI will integrate with EPSRC Prosperity Outcomes of Delivery Plan 2016-20 and enable technological advances in relation to the Manufacturing the Future theme, contributing to a Productive and Resilient Nation.
盆景是一个雄心勃勃的3年研究项目,旨在研究小型渠道中沸腾流的基本热量和传质特征。它结合了基于空间/时间分辨诊断的尖端实验,以及高保真界面分辨的数值模拟,最终为高性能紧凑型蒸发器提供了验证的热设计工具。拟议的项目在伦敦帝国大学,伦敦布鲁内尔大学和诺丁汉大学组装了研究人员的多学科专业知识,并得到了3个世界领先的研究机构的支持:艾伦·图灵研究所(Alan Turing Institute),CERN,CERN(瑞士)和Vir2al; and 11 industry partners: Aavid Boyd Thermacore, Alfa Laval, CALGAVIN, HEXAG&PIN, HiETA, Hubbard/Daikin, IBM, Oxford nanoSystems, Ricardo, TMD and TTP.The recent trend towards device miniaturisation driven by the microelectronics industry has placed an increasing demand on removing higher thermal loads, of order of MW/m2, from areas订单CM2。在某些应用中(例如制冷)需要新的“绿色”制冷剂,但是由于易燃性或成本而导致少量,而在其他情况下(例如,用于EV和其他应用的电池)不均匀或不稳定的热量散热对性能和生命周期非常有害。在多微通道蒸发器中沸腾的流动沸腾有望满足低流体体积的挑战性要求,还可以在远远超出当前最新面前的系统中,使温度均匀性和较小的抽水功率允许更高的温度均匀性和较小的抽水功率。由于显着的工业(热交换)和环境(有效的能源利用)兴趣,近年来对沸腾传热的理解有所改善,重点是流动模式过渡和特征,压降和传热性能。但是,我们目前的理解根本不足以促进这些微型交换器在行业中的更广泛使用,这仍然无法探索。Bonsai专门针对微型设备及其与工业设计相关的小型沸腾的基本现象量身定制。要解决的挑战包括通道形状和表面特征对流动不稳定性,热传递和压降的影响,以及液体蒸气界面的时间相关演变,薄液体膜动力学,流动场,干蒸气斑块的外观,热点斑点和局部传热特性之间的关系。生成的广泛的实验/数值数据库将通过理论和新型的机器学习方法利用,以开发基于物理的设计工具,以预测工业相关的热氢参数对系统性能的影响。与我们的合作伙伴的合作将确保与工业需求保持一致,并加速技术转移到行业。此外,HIETA将提供金属添加剂制造散热器,以作为大量生产微通道热交换器的方式进行评估,牛津纳米系统将提供纳米结构的表面涂层,而IBM将支持访问其研究实验室的访问,仅针对他们的研究实验室,而不得促进一定的研究,而不是构成量表的研究。两阶段的热解决方案,因此在工业领域满足了当前和未来的需求,但也将导致对数据中心进行更有效的热管理,并随着降低能源消耗和碳足迹的降低,以及目前被拒绝的废物的恢复和再利用。这将构成到2050年到2050年实现英国排放目标的重要一步。此外,盆景将与EPSRC 2016 - 20年的EPSRC繁荣成果融为一体,并实现与制造未来主题有关的技术进步,从而有助于生产和弹性国家。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heat Transfer Enhancement in Wavy Films Falling on a Heated Inclined Plate
  • DOI:
    10.2139/ssrn.4172033
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Collignon, R.;Caballina, O.;Castanet, G.
  • 通讯作者:
    Castanet, G.
Flow boiling in copper and aluminium microchannels
铜和铝微通道中的流动沸腾
Influence of inlet vapour quality perturbations on the transient response of flow-boiling heat transfer
  • DOI:
    10.1016/j.ijheatmasstransfer.2021.121017
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    J. Dirker;W. van den Bergh;H. Moran;C. Markides;J. Meyer
  • 通讯作者:
    J. Dirker;W. van den Bergh;H. Moran;C. Markides;J. Meyer
Nano-engineered pathways for advanced thermal energy storage systems
  • DOI:
    10.1016/j.xcrp.2022.101007
  • 发表时间:
    2022-08-17
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Alagumalai, Avinash;Yang, Liu;Markides, Christos N.
  • 通讯作者:
    Markides, Christos N.
PREFACE TO SPECIAL ISSUE: HEAT TRANSFER,WAVES, AND VORTEX PHENOMENA IN TWO-PHASE FLOWS
专题前言:两相流中的传热、波和涡流现象
共 8 条
  • 1
  • 2
前往

Christos Markides其他文献

有机郎肯循环中喷射器能量分析
Low-loss THz Waveguides and Devices
低损耗太赫兹波导和器件
  • DOI:
    10.1364/photonics.2014.m3c.1
    10.1364/photonics.2014.m3c.1
  • 发表时间:
    2014
    2014
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    B. Rahman;M. Uthman;A. Quadir;K. Grattan;Christos Markides;C. Themistos
    B. Rahman;M. Uthman;A. Quadir;K. Grattan;Christos Markides;C. Themistos
  • 通讯作者:
    C. Themistos
    C. Themistos
共 2 条
  • 1
前往

Christos Markides的其他基金

Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption; Acronym: Micro-FloTec
微尺度实现了高性能、低功耗的先进流动和传热技术;
  • 批准号:
    EP/Y004973/1
    EP/Y004973/1
  • 财政年份:
    2023
  • 资助金额:
    $ 107.8万
    $ 107.8万
  • 项目类别:
    Research Grant
    Research Grant
PCM-in-PV - PV cells with modified optical and thermal properties for high-efficiency electrical applications
PCM-in-PV - 具有改进的光学和热性能的光伏电池,适用于高效电气应用
  • 批准号:
    EP/Y02821X/1
    EP/Y02821X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 107.8万
    $ 107.8万
  • 项目类别:
    Fellowship
    Fellowship
Indiacool - UK-India Solar Cooling Innovation (Energy Catalyst Mid-stage Programme)
Indiacool - 英国-印度太阳能冷却创新(能源催化剂中期计划)
  • 批准号:
    EP/P030920/1
    EP/P030920/1
  • 财政年份:
    2017
  • 资助金额:
    $ 107.8万
    $ 107.8万
  • 项目类别:
    Research Grant
    Research Grant
Energy-Use Minimisation via High Performance Heat-Power-Cooling Conversion and Integration: A Holistic Molecules to Technologies to Systems Approach
通过高性能热-电-冷却转换和集成实现能源使用最小化:从分子到技术再到系统的整体方法
  • 批准号:
    EP/P004709/1
    EP/P004709/1
  • 财政年份:
    2016
  • 资助金额:
    $ 107.8万
    $ 107.8万
  • 项目类别:
    Research Grant
    Research Grant
Pumped Thermal Electricity Storage
抽水蓄能
  • 批准号:
    EP/J006041/1
    EP/J006041/1
  • 财政年份:
    2012
  • 资助金额:
    $ 107.8万
    $ 107.8万
  • 项目类别:
    Research Grant
    Research Grant

相似国自然基金

面向小核心机高压压气机的开放式间隙泄漏流时空演化机制研究
  • 批准号:
    52376027
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于液滴微流控开展非小细胞肺癌新抗原特异性TCR的可视化分析及其识别机制的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
黄土高原植被自然恢复和人工造林小流域土壤优先流特征的差异及其对产流过程的影响研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
黄土高原植被自然恢复和人工造林小流域土壤优先流特征的差异及其对产流过程的影响研究
  • 批准号:
    42201033
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于水动态分析的小流域泥石流早期预报与控灾方法
  • 批准号:
    42230702
  • 批准年份:
    2022
  • 资助金额:
    273 万元
  • 项目类别:
    重点项目

相似海外基金

Boiling Flows in Small and Microchannels (BONSAI): From Fundamentals to Design
小通道和微通道中的沸腾流 (BONSAI):从基础知识到设计
  • 批准号:
    EP/T033045/1
    EP/T033045/1
  • 财政年份:
    2021
  • 资助金额:
    $ 107.8万
    $ 107.8万
  • 项目类别:
    Research Grant
    Research Grant
Boiling Flows in Small and Microchannels (BONSAI): From Fundamentals to Design
小通道和微通道中的沸腾流 (BONSAI):从基础知识到设计
  • 批准号:
    EP/T033398/1
    EP/T033398/1
  • 财政年份:
    2020
  • 资助金额:
    $ 107.8万
    $ 107.8万
  • 项目类别:
    Research Grant
    Research Grant
Proposal of method of critical heat flux enhancement in small space boiling
小空间沸腾临界热流增强方法的提出
  • 批准号:
    17K06209
    17K06209
  • 财政年份:
    2017
  • 资助金额:
    $ 107.8万
    $ 107.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Effect of lubricating oil on flow boiling heat transfer of low GWPrefrigerant R-1234yf in a horizontal small-diameter tube
润滑油对低GW预冷剂R-1234yf在水平小直径管内流动沸腾传热的影响
  • 批准号:
    22560188
    22560188
  • 财政年份:
    2010
  • 资助金额:
    $ 107.8万
    $ 107.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Boiling Heat Transfer in Small FlowChannels and its Enhancement Mechanism
小流量通道内沸腾传热及其强化机理
  • 批准号:
    22560201
    22560201
  • 财政年份:
    2010
  • 资助金额:
    $ 107.8万
    $ 107.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)