High Throughput Preparation of Tuneable Magnetically Assembled 1D Nanostructures

可调谐磁组装一维纳米结构的高通量制备

基本信息

  • 批准号:
    EP/T026014/1
  • 负责人:
  • 金额:
    $ 54.51万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Development of technological advances is important in the continually growing nanotechnology market, which is set to exceed $125 billion within the next five years. 1-dimensional (1D) nanostructures, possessing one dimension outside the nanoscale (<100 nm) range, are typically nanowires, nanofibers and nanotubes, and occupy a significant portion of this fast-growing market due to their application in sectors ranging from batteries to biomedicine. Magnetic 1D materials have become particularly popular in recent years, as their large aspect ratio and 1D structure gives rise to anisotropy, which can produce orientated electronic and ionic transport and unusual anisotropic optical and magnetic properties. As a result of these properties, magnetic 1D materials have found application in magnetic recording, lithium ion batteries, sensors, catalysis and medicine. Such 1D materials can outperform their nanoparticle (or 0-dimensional, 0D) counterparts in many applications, for example in medicine, where anisotropy leads to increased magnetisation and local magnetic field strengths. This provides improved performance in medical imaging techniques such as magnetic resonance imaging (MRI), where 1D materials boost signal enhancement compared to their 0D analogues thanks to the increased anisotropy of their 1D structures. A number of new fabrication techniques for 1D materials have hence been pioneered and developed, including templating, bottom-up growth, lithography, electrospinning, and particle assembly, though these often suffer from poor tuneability of the resulting structures, and hence properties, as well as challenges with scalability - issues which are critical for their long-term use and industrial uptake. Magnetic interactions have long been used to generate colloidal structures which respond readily to a magnetic field, with ferrofluids being the most well-known example. The preparation of permanent 1D materials using magnetic assembly approaches has been explored recently, with clusters of magnetic nanoparticles being assembled into permanent arrays of nanowires or nanotubes either during synthesis, or through magnetically stimulated nanoparticle assembly. Although successfully forming 1D nanostructures, these approaches suffer from difficulties in controlling the resulting materials' size, aspect ratio and surface chemistry. There is, therefore, a clear need for a technique capable of reproducibly fabricating magnetic 1D nanostructures with controlled and tuneable aspect ratios, sizes and surfaces, at high scales. In this proposal, we aim to achieve this through the exploitation of continuous flow technology combined with magnetic assembly to produce core-shell 1D nanostructured materials with various coatings, which can be modified with ease for numerous different applications. This work will systematically explore the effect of flow rate, magnetic field strength and duration, magnetic nanoparticle building blocks and various coating agents in order to form a library of 1D materials whose properties are tuneable and reproducible.In this way, we will develop a novel, high throughput approach to magnetic 1D nanomaterials which will have precision control over structure, aspect ratio, surfaces and hence resulting properties of the 1D materials, in addition to the benefits of scalability that come with fluid flow systems. As a case study, the produced materials will be tested for their performance as contrast agents in magnetic resonance imaging (MRI). Using state-of-the-art magnetic resonance imaging tools, quantitative assessment of performance will demonstrate the benefits of tuneable 1D materials in this important medical application.
技术进步的发展对于不断增长的纳米技术市场非常重要,该市场预计在未来五年内将超过 1250 亿美元。一维 (1D) 纳米结构具有纳米级(<100 nm)范围之外的一维,通常是纳米线、纳米纤维和纳米管,由于其在电池、生物医学。近年来,磁性一维材料变得特别流行,因为它们的大纵横比和一维结构会产生各向异性,可以产生定向电子和离子传输以及不寻常的各向异性光学和磁性能。由于这些特性,磁性一维材料已在磁记录、锂离子电池、传感器、催化和医学领域得到应用。这种一维材料在许多应用中都优于纳米颗粒(或0维,0D)材料,例如在医学中,各向异性导致磁化强度和局部磁场强度增加。这提高了磁共振成像 (MRI) 等医学成像技术的性能,其中,由于一维结构的各向异性增加,与 0D 类似物相比,一维材料可以增强信号。因此,许多新的一维材料制造技术被开创和开发,包括模板、自下而上生长、光刻、静电纺丝和粒子组装,尽管这些技术通常会受到所得结构和性能可调节性较差的影响。可扩展性方面的挑战——对于其长期使用和工业应用至关重要的问题。磁相互作用长期以来一直被用来生成易于对磁场做出响应的胶体结构,铁磁流体是最著名的例子。最近,人们探索了使用磁性组装方法制备永久一维材料,在合成过程中或通过磁刺激纳米颗粒组装将磁性纳米颗粒簇组装成纳米线或纳米管的永久阵列。虽然成功形成一维纳米结构,但这些方法在控制所得材料的尺寸、纵横比和表面化学方面遇到困难。因此,显然需要一种能够高规模、可重复地制造具有受控和可调的纵横比、尺寸和表面的磁性一维纳米结构的技术。在本提案中,我们的目标是通过利用连续流技术与磁组装相结合来生产具有各种涂层的核壳一维纳米结构材料,这些材料可以轻松修改以适应多种不同的应用,从而实现这一目标。这项工作将系统地探索流速、磁场强度和持续时间、磁性纳米粒子构建块和各种涂层剂的影响,以形成性能可调节和可重复的一维材料库。通过这种方式,我们将开发一种新颖的材料磁性一维纳米材料的高通量方法,除了流体流动系统带来的可扩展性的优点之外,还将对一维材料的结构、长宽比、表面以及由此产生的特性进行精确控制。作为案例研究,所生产的材料将在磁共振成像 (MRI) 中测试其作为造影剂的性能。使用最先进的磁共振成像工具,对性能进行定量评估将证明可调谐一维材料在这一重要医疗应用中的优势。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
From 0D to 2D: Synthesis and bio-application of anisotropic magnetic iron oxide nanomaterials
  • DOI:
    10.1016/j.pmatsci.2024.101267
  • 发表时间:
    2024-03-09
  • 期刊:
  • 影响因子:
    37.4
  • 作者:
    Chang,Fuqiang;Davies,Gemma-Louise
  • 通讯作者:
    Davies,Gemma-Louise
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gemma-Louise Davies其他文献

Gemma-Louise Davies的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gemma-Louise Davies', 18)}}的其他基金

High Throughput Preparation of Tuneable Magnetically Assembled 1D Nanostructures
可调谐磁组装一维纳米结构的高通量制备
  • 批准号:
    EP/T026014/2
  • 财政年份:
    2023
  • 资助金额:
    $ 54.51万
  • 项目类别:
    Research Grant

相似国自然基金

准备金监管套利和非监管套利视角下的中国影子银行及最优监管机制研究
  • 批准号:
    72373147
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
疫情防控常态化下特大城市应急准备能力评估:制度体系、运行反馈与学习优化
  • 批准号:
    72274232
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
出院准备情境下早产儿父母的同伴支持模式研究:基于最优匹配理论与时机理论
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于“情景-任务-能力”模式的儿童医院突发公共卫生事件应急准备体系研究
  • 批准号:
    72104152
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
真实条件下警用手枪射击准备阶段大脑神经机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Preparation for the Deep Underground Neutrino Experiment and Measurement of Pion-Argon Cross-sections
深部地下中微子实验准备及π-氩截面测量
  • 批准号:
    2902765
  • 财政年份:
    2024
  • 资助金额:
    $ 54.51万
  • 项目类别:
    Studentship
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 54.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 54.51万
  • 项目类别:
    Standard Grant
STEM Advancement through Collaboration in STEM Teacher Preparation
通过 STEM 教师培训合作推动 STEM 进步
  • 批准号:
    2344950
  • 财政年份:
    2024
  • 资助金额:
    $ 54.51万
  • 项目类别:
    Continuing Grant
Building Capacity through Professional Learning Communities to Advance Identity Integration in STEM Pre-Service Teacher Preparation
通过专业学习社区进行能力建设,促进 STEM 职前教师准备中的身份整合
  • 批准号:
    2345042
  • 财政年份:
    2024
  • 资助金额:
    $ 54.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了