H2-Heat: Thermal energy transport for heating and cooling with innovative hydrogen(H2) technologies
H2-Heat:利用创新的氢 (H2) 技术进行加热和冷却的热能传输
基本信息
- 批准号:EP/T022760/1
- 负责人:
- 金额:$ 126.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the UK, heat accounts for over a third of the nation's greenhouse gas emissions. Most of the heating and cooling in our industries and buildings are delivered directly or indirectly by fossil fuels. Apart from the greenhouse emissions, the extensive consumption of fossil fuels can also lead to a large depletion of energy resources, waste heat production and pollution to the surrounding environment. To meet the target of Net Zero greenhouse gas emissions by 2050, there is an urgent need for decarbonising heating and cooling by utilising renewable energy and industrial waste heat with advanced technologies. Compared to renewable energy such as solar, the resources from industrial waste heat have clear advantages including greater stabilisation, less cost and larger temperature ranges. Therefore, industrial waste heat recovery for decarbonised heating and cooling is an attractive concept that could simultaneously reduce fossil fuel consumption and CO2 emissions. Evidently, in the UK, based on a recent report, it was identified that around 48 TWh/yr industrial waste heat sources were available of which about 28 TWh/yr could be potentially used to meet the heating and cooling demands. All heat-intensive industrial sectors including iron & steel, refineries, ceramics, glass, cement, chemicals, food and drink, paper and pulp can contribute to this potential. Even so, high efficient energy conversion systems need to be designed and applied so as to maximize the waste heat utilisations for heating and cooling. On the other hand, the locations of industrial waste heat providers such as steel plants are mostly far away from the utilisers for heating and cooling. Conventionally, hot water heated by the industrial waste heat is transported through long distance water pipe to the end user site which can cause huge pump power consumption and heat losses due to significant friction pressure drop for the water flow and large temperature difference between water flow and ambient. There are therefore challenges to the long-distance waste heat transport and high-efficient and innovative energy conversion technologies for the decarbonising heating and cooling. To address these challenges, in this proposal, strategies for a novel concept of decarbonising district heating and cooling system (H2-heat) will be developed with the integration of metal hydride (MH) heat pump on site, long distance hydrogen and heat transport, and MH heating and cooling for end users. In such a system, low grade heat (~210C) and extra low grade heat (~40C) from TATA Steel plant or a similar industry site will be used as heat sources while building heating and cooling spaces are applied as heat sink and low temperature heat source respectively at end user side. Technologies of MH heat pump, a thermal driven chemical compressor with MH, long distance hydrogen and heat transport, MH space heating and cooling, MH alloys and reactors applied in the systems and processes, controls for space heating and cooling etc. will be identified and investigated. Ultimately, a decarbonising district heating and cooling test system with industrial waste heat from TATA Steel plant or other industrial sites will be constructed in lab with 5 kWth heating or cooling capacity and high heat transport efficiency. Furthermore, a detailed mathematical model will be developed and validated for the established system; this can be used for a system scale-up into actual application in TATA Steel plant or other industrial sites where low grade waste heat is available. As yet, no research activity on such a system can be found either nationally or internationally. Important reasons include the difficulty in choosing a thermal driven long distance hydrogen and heat transport system and associated MH alloys for space heating and cooling and complicated designs of MH reactors in the H2-heat system. These challenges and issues will be addressed and solved by this proposed project.
在英国,热量占全国温室气体排放量的三分之一以上。我们的工业和建筑中的大部分供暖和制冷都是直接或间接通过化石燃料提供的。除了温室气体排放外,化石燃料的大量消耗还会导致能源大量枯竭、余热产生和周围环境污染。为了实现2050年温室气体净零排放的目标,迫切需要利用先进技术利用可再生能源和工业余热来实现供暖和制冷脱碳。与太阳能等可再生能源相比,工业余热资源具有明显的优势,包括更高的稳定性、更低的成本和更大的温度范围。因此,工业废热回收用于脱碳供暖和制冷是一个有吸引力的概念,可以同时减少化石燃料消耗和二氧化碳排放。显然,根据最近的一份报告,英国每年可利用约 48 太瓦时的工业废热源,其中约 28 太瓦时/年可用于满足供暖和制冷需求。所有热密集型工业部门,包括钢铁、炼油厂、陶瓷、玻璃、水泥、化学品、食品和饮料、造纸和纸浆,都可以为这一潜力做出贡献。即便如此,仍需要设计和应用高效的能量转换系统,以最大限度地利用废热来供暖和制冷。另一方面,钢铁厂等工业余热提供者的位置大多距离供暖和制冷用户较远。传统上,工业余热加热的热水通过长距离水管输送到最终用户现场,由于水流摩擦压降较大以及水流与水流之间的温差较大,会造成巨大的泵功率消耗和热损失。周围的。因此,用于脱碳供暖和制冷的长距离余热输送和高效创新的能量转换技术面临着挑战。为了应对这些挑战,在本提案中,将开发一种脱碳区域供热和冷却系统(H2-热)新概念的策略,将现场金属氢化物(MH)热泵、长距离氢气和热传输集成在一起,以及为最终用户提供 MH 加热和冷却。在这样的系统中,塔塔钢铁厂或类似工业场所的低品位热量(~210C)和超低品位热量(~40C)将用作热源,而建筑供暖和制冷空间则用作散热器和低温热源分别位于最终用户侧。 MH热泵、MH热驱动化学压缩机、长距离氢和热传输、MH空间加热和冷却、MH合金和反应器应用于系统和过程、空间加热和冷却控制等技术将被确定和调查了。最终,利用塔塔钢铁厂或其他工业场所的工业废热,将在实验室建造一个脱碳区域供热和制冷测试系统,具有5千瓦的供热或制冷能力和高传热效率。此外,将为已建立的系统开发和验证详细的数学模型;这可用于将系统扩大到塔塔钢铁厂或其他可获得低品位废热的工业场所的实际应用。迄今为止,国内外尚无关于此类系统的研究活动。重要原因包括难以选择用于空间加热和冷却的热驱动长距离氢气和热传输系统以及相关的金属氢合金,以及氢气热系统中金属氢反应器的复杂设计。这些挑战和问题将通过该拟议项目得到解决。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Alloy Selections in High-Temperature Metal Hydride Heat Pump Systems for Industrial Waste Heat Recovery
用于工业余热回收的高温金属氢化物热泵系统的合金选择
- DOI:10.2139/ssrn.3967478
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ge Y
- 通讯作者:Ge Y
Performance analysis of a metal hydride refrigeration system
金属氢化物制冷系统性能分析
- DOI:10.1016/j.applthermaleng.2023.121264
- 发表时间:2023
- 期刊:
- 影响因子:6.4
- 作者:Ge Y
- 通讯作者:Ge Y
Experimental investigation and CFD modelling analysis of finned-tube PCM heat exchanger for space heating
- DOI:10.1016/j.applthermaleng.2024.122731
- 发表时间:2024-05
- 期刊:
- 影响因子:6.4
- 作者:X.Y. Zhang;Y.T. Ge;Burra;P.Y. Lang
- 通讯作者:X.Y. Zhang;Y.T. Ge;Burra;P.Y. Lang
Characterisation of pressure-concentration-temperature profiles for metal hydride hydrogen storage alloys with model development
通过模型开发表征金属氢化物储氢合金的压力-浓度-温度曲线
- DOI:10.1002/est2.504
- 发表时间:2023
- 期刊:
- 影响因子:3.2
- 作者:Ge Y
- 通讯作者:Ge Y
The effect of heat conduction through fins on the performance of finned-tube CO2 supercritical gas coolers
- DOI:10.1016/j.ijheatmasstransfer.2021.121908
- 发表时间:2021-12
- 期刊:
- 影响因子:5.2
- 作者:X. Zhang;Y. Ge
- 通讯作者:X. Zhang;Y. Ge
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yunting Ge其他文献
Yunting Ge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yunting Ge', 18)}}的其他基金
Bio-CO2: Power Generation and Heat Recovery from Biomass with Advanced CO2 Thermodynamic Power Cycles and Novel Heat Exchanger Designs
生物二氧化碳:利用先进的二氧化碳热力学动力循环和新颖的热交换器设计从生物质中发电和热回收
- 批准号:
EP/R000298/3 - 财政年份:2020
- 资助金额:
$ 126.81万 - 项目类别:
Research Grant
Bio-CO2: Power Generation and Heat Recovery from Biomass with Advanced CO2 Thermodynamic Power Cycles and Novel Heat Exchanger Designs
生物二氧化碳:利用先进的二氧化碳热力学动力循环和新颖的热交换器设计从生物质中发电和热回收
- 批准号:
EP/R000298/2 - 财政年份:2018
- 资助金额:
$ 126.81万 - 项目类别:
Research Grant
Bio-CO2: Power Generation and Heat Recovery from Biomass with Advanced CO2 Thermodynamic Power Cycles and Novel Heat Exchanger Designs
生物二氧化碳:利用先进的二氧化碳热力学动力循环和新颖的热交换器设计从生物质中发电和热回收
- 批准号:
EP/R000298/1 - 财政年份:2017
- 资助金额:
$ 126.81万 - 项目类别:
Research Grant
Power Generation and Heat Recovery from Industrial Waste Heat with Advanced CO2 Thermodynamic Power Cycles (CO2Power)
利用先进的二氧化碳热力动力循环 (CO2Power) 从工业废热中发电和热回收
- 批准号:
EP/L505869/1 - 财政年份:2014
- 资助金额:
$ 126.81万 - 项目类别:
Research Grant
相似国自然基金
超细MgH2-YF3/CoF3@C3N4体系的可控制备及吸放氢热/动力学性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于TiO2光催化剂的热催化机理促进镁在温和条件下吸/放氢
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于分子筛的MgH2-NaBH4储氢材料的原位量热研究
- 批准号:21805169
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
用于H2S热解反应高通量混合质子电子导体透氢膜的制备及其研究
- 批准号:21706160
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水热条件下CO2和H2反应形成烷烃的特征及其制约因素研究
- 批准号:40803018
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
- 批准号:
2327571 - 财政年份:2023
- 资助金额:
$ 126.81万 - 项目类别:
Standard Grant
Characterization of passive and active whole-body heat stress responses in obese and non-obese adults
肥胖和非肥胖成人被动和主动全身热应激反应的特征
- 批准号:
10675123 - 财政年份:2023
- 资助金额:
$ 126.81万 - 项目类别:
Mechanisms of mitochondrial-ER communication during dietary and thermal induced stress
饮食和热应激期间线粒体-内质网通讯的机制
- 批准号:
10663603 - 财政年份:2023
- 资助金额:
$ 126.81万 - 项目类别:
Establishment of thermal property evaluation and performance design method for multi-functional panels utilizing heat insulation and heat storage by wood
木材隔热蓄热多功能板材热性能评价及性能设计方法的建立
- 批准号:
23K04145 - 财政年份:2023
- 资助金额:
$ 126.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hexagonal-boron nitride and ionic liquid doped hybrid adsorbent for heat transformation applications
用于热转换应用的六方氮化硼和离子液体掺杂混合吸附剂
- 批准号:
22KF0300 - 财政年份:2023
- 资助金额:
$ 126.81万 - 项目类别:
Grant-in-Aid for JSPS Fellows